[1] Feng, D., Liu, J., Lawson, K., Shen, C., 2022. Differentiable, learnable, regionalized process‐based models with multiphysical outputs can approach state‐of‐the‐art hydrologic prediction accuracy. Water Resour Res 58 (10). https://doi.org/10.1029/2022WR032404
[2] Kratzert, F., Gauch, M., Nearing, G., Klotz, D., 2022. Neuralhydrology — a python library for deep learningresearch in hydrology. Journal of Open Source Software 7 (71), 4050. https://doi.org/10.21105/joss.04050
[3]Kratzert, F., Nearing, G., Addor, N., Erickson, T., Gauch, M., Gilon, O., Gudmundsson, L., Hassidim, A., Klotz, D., Nevo, S., Shalev, G., Matias, Y., 2023. Caravan - a global community dataset for large-sample hydrology. Sci Data10 (1), 61. https://doi.org/10.1038/s41597-023-01975-w