对于这一问题,学界也发出了警告,并给出了一些建议。
麻省理工学院计算学院的教授 Armando Solar-Lezama 表示,对抗性攻击存在于语言模型中是有道理的,因为它们影响着许多机器学习模型。然而,令人惊奇的是,一个针对通用开源模型开发的攻击居然能在多个不同的专有系统上如此有效。
Solar-Lezama 认为,问题可能在于所有 LLMs 都是在类似的文本数据语料库上进行训练的,其中很多数据都来自于相同的网站,而世界上可用的数据是有限的。
“任何重要的决策都不应该完全由语言模型独自做出,从某种意义上说,这只是常识。”他强调了对 AI 技术的适度使用,特别是在涉及重要决策或有潜在风险的场景下,仍需要人类的参与和监督,这样才能更好地避免潜在的问题和误用。
普林斯顿大学的计算机科学教授 Arvind Narayanan 谈道:“让 AI 不落入恶意操作者手中已不太可能。”他认为,尽管应该尽力提高模型的安全性,但我们也应该认识到,防止所有滥用是不太可能的。因此,更好的策略是在开发 AI 技术的同时,也要加强对滥用的监管和对抗。
担忧也好,不屑也罢。在 AI 技术的发展和应用中,我们除了关注创新和性能,也要时刻牢记安全和伦理。
只有保持适度使用、人类参与和监督,才能更好地规避潜在的问题和滥用,使 AI 技术为人类社会带来更多的益处。
参考链接:
https://llm-attacks.org/
https://arxiv.org/abs/2307.15043
https://github.com/llm-attacks/llm-attacks
https://www.wired.com/story/ai-adversarial-attacks/
https://www.businessinsider.com/ai-experts-say-no-fix-jailbreaks-chatgpt-bard-safety-rules-2023-8
来源 | 学术头条
-----------------END-------------------
欢迎加入【机器人大讲堂】读者讨论群, 共同探讨机器人相关领域话题,共享前沿科技及产业动态。
教育机器人、医疗机器人、腿足机器人、工业机器人、服务机器人、特种机器人、无人机、软体机器人等专业讨论群正在招募, 关注机器人大讲堂公众号,发送“ 交流群 ”获取入群方式!
机器人大讲堂正在招募【兼职内容创作者】,如果您对撰写机器人【科技类】或【产业类】文章感兴趣,可将简历和原创作品投至邮箱: LDjqrdjt@163.com
我们对职业、所在地等没有要求,欢迎朋友们的加入!