社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  机器学习算法

收藏 | 复旦大学机器学习、深度学习公开课,附PDF课件下载

磐创AI • 4 年前 • 519 次点击  

 授课目标

掌握深度学习的基本原理、常用算法,并在此基础上应用于机器视觉、自然语言处理等相关领域,培养一定的分析和解决实际问题的能力。


复旦大学公开课机器学习、深度学习课件:
扫码后台回复:5798,即可获取电子版
 课程大纲

01 神经网络基础

理解前馈神经网络的结构、梯度下降法以及网络训练调优的基本方法,并能应用前馈神经网络解决实际问题。建议5个学时。打*的内容属于高级版,后面陆续推出。

课时

1.1 神经网络简介

1.2 神经网络相关概念

1.3 神经网络效果评价

1.4 神经网络优化

1.5 银行客户流失预测

1.6 练习题

02 深度学习在人工智能系统的应用

通过众多的案例,了解深度学习的典型应用场景。建议2个学时。

课时

2.1 深度学习典型应用场景

2.2 深度学习应用案例分析

2.3 练习题

03 卷积神经网络

理解卷积的内涵,熟悉常用的10几种卷积神经网络的结构、训练方法以及典型场景的应用。建议10个学时。

课时

3.1 卷积的理解—卷积和池化

3.2 常见的卷积模型

@Lenet-5、AlexNet、VGGNet、GoogleLeNet、ResNet等

@Inception v2-v4、DarkNet、DenseNet、SSD等*

@MobileNet,ShuffleNet*

3.3 胶囊网络*

3.4 CNN卷积神经网络应用案例

3.5 目标检测常用算法

@R-CNN、Fast RCNN、Faster RCNN、YOLOv1-v3等

3.5 图像分类

3.6 动物识别

3.7 物体检测

3.8 人脸表情年龄特征识别*

3.9 练习题

04 循环神经神经网络

理解循环神经网络以及变种LSTM、GRU的结构、训练方法以及典型场景的应用。建议6个学时。

课时

4.1 RNN基本原理

4.2 LSTM

4.3 GRU

4.4 CNN+LSTM模型

4.5 Bi-LSTM双向循环神经网络结构

4.6 Seq2seq模型

4.7 注意力机制

4.8 自注意力机制*

4.9 ELMo、Transformer等*

4.10 BERT、EPT、XLNet、ALBERT等*

4.11 机器翻译

4.12 练习题

05 生成对抗网络

理解生成对抗网络的结构、训练方法以及典型场景的应用。建议5个学时。

课时

5.1 生成对抗网络模型

5.2 GAN的理论知识

5.3 DCGAN

5.4 自动生成手写体

5.5 CycleGAN*

5.6 WGAN*

5.7 练习题

06 深度学习神经网络应用

学会使用卷积神经网络、循环神经网络、生成对抗网络的常用算法的应用,解决实际问题,并能做创新性的应用。建议5个学时。

课时

6.1 股票走势预测

6.2 文本情感分类

6.3 图像风格转移*

6.4 机器翻译

6.5 练习题

07 强化学习

理解强化学习的基本概念和原理,了解强化学习的典型应用场景。建议2个学时。

课时

7.1 强化学习基本原理

7.2 强化学习常用模型

7.3 强化学习典型应用

7.4 深度Q网络*

7.5 练习题

08 项目驱动的深度学习方法

理解如何结合实际项目,强化机器学习和深度学习理论知识的深入理解,体会深度学习解决实际问题的技巧和技能。建议2个学时,加1个学时的讨论。

课时

8.1 项目驱动的深度学习之路

8.2 领域问题驱动的机器学习深度教学法

课件:
扫码后台回复:5798,即可获取电子版
Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/74580
 
519 次点击