传统机器学习的优势是能够进行特征内省-即系统理解为什么将一项输入这样或那样分类,这对于分析而言很重要。但这种优势却恰恰导致传统机器学习系统无法处理未标记、非结构化的数据,也无法像最新的深度学习模型那样达到前所未有的准确度。特征工程是传统机器学习的主要瓶颈之一,因为很少有人能把特征工程做得又快又好,适应数据变化的速度。
对于必须进行特征内省的应用情景(例如法律规定,以预测的信用风险为由拒绝贷款申请时必须提供依据),我们建议使用与多种传统机器学习算法相集成的深度神经网络,让每种算法都有投票权,发挥各自的长处。或者也可以对深度神经网络的结果进行各类分析,进而推测网络的决策原理。
原文:https://deeplearning4j.org/cn/use_cases