使用
   
    numpy.repeat
   
   具有
   
    np.arange
   
   :
  
  import numpy as np
    arr = np.array([[[3, 1, 3, 1, 2],
  [4, 4, 4, 2, 0],
  [3, 4, 4, 4, 0],
  [1, 4, 3, 3, 0]],
 [[4, 2, 0, 2, 1],
  [2, 1, 2, 0, 3],
  [4, 1, 3, 4, 3],
  [2, 3, 2, 0, 0]]])
arr2d = np.vstack(arr)
dup = arr2d[np.repeat(np.arange(arr2d.shape[0]), arr2d[:,0])]
np.split(dup, np.cumsum(np.sum(np.split(arr2d[:,0], arr.shape[0]), 1)))[:-1]
  
   输出:
  
  [array([[3, 1, 3, 1, 2],
        [3, 1, 3, 1, 2],
        [3, 1, 3, 1, 2],
        [4, 4, 4, 2, 0],
        [4, 4, 4, 2, 0],
        [4, 4, 4, 2, 0],
        [4, 4, 4, 2, 0],
        [3, 4, 4, 4, 0],
        [3, 4, 4, 4, 0],
        [3, 4, 4, 4, 0],
        [1, 4, 3, 3, 0]]), 
 array([[4, 2, 0, 2, 1],
        [4, 2, 0, 2, 1],
        [4, 2, 0, 2, 1],
        [4, 2, 0, 2, 1],
        [2, 1, 2, 0, 3],
        [2, 1, 2, 0, 3],
        [4, 1, 3, 4, 3],
        [4, 1, 3, 4, 3],
        [4, 1, 3, 4, 3],
        [4, 1, 3, 4, 3],
        [2, 3, 2, 0, 0],
        [2, 3, 2, 0, 0]])]
  
   由于2d数组并不总是具有相同的形状,因此在大多数情况下,它将生成数组列表。这样的不一致并没有得到很好的处理
   
    numpy
   
   .
  
  
   在这种情况下,您可以简单地使用
   
    itertools.repeat
   
   具有
   
    list
   
   理解力。(尽管它看起来与@gmds的答案非常相似)
  
  
   鉴于
   
    l
   
   :
  
  import itertools
l = [[[3, 1, 3, 1, 2], [4, 4, 4, 2, 0], [3, 4, 4, 4, 0], [1, 4, 3, 3, 0]],
 [[4, 2, 0, 2, 1], [2, 1, 2, 0, 3], [4, 1, 3, 4, 3], [2, 3, 2, 0, 0]]]
[[j for i in sub for j in itertools.repeat(i, i[0])] for sub in l]
  
   输出:
  
  [[[3, 1, 3, 1, 2],
  [3, 1, 3, 1, 2],
  [3, 1, 3, 1, 2],
  [4, 4, 4, 2, 0],
  [4, 4, 4, 2, 0],
  [4, 4, 4, 2, 0],
  [4, 4, 4, 2, 0],
  [3, 4, 4, 4, 0],
  [3, 4, 4, 4, 0],
  [3, 4, 4, 4, 0],
  [1, 4, 3, 3, 0]],
 [[4, 2, 0, 2, 1],
  [4, 2, 0, 2, 1],
  [4, 2, 0, 2, 1],
  [4, 2, 0, 2, 1],
  [2, 1, 2, 0, 3],
  [2, 1, 2, 0, 3],
  [4, 1, 3, 4, 3],
  [4, 1, 3, 4, 3],
  [4, 1, 3, 4, 3],
  [4, 1, 3, 4, 3],
  [2, 3, 2, 0, 0],
  [2, 3, 2, 0, 0]]]