YOLO(You Only Look Once)架构以其实时目标检测能力而闻名,广泛应用于植物图像分析中的目标检测(Liu等,2024)。Li等人展示了CFNet-VoV-GCSP-LSKNet-YOLOv8s模型在具有挑战性的环境条件下准确识别棉花害虫和疾病的有效性。模型的卓越性能为害虫和疾病爆发的实时监测和早期干预提供了有希望的解决方案,从而减轻了产量损失并减少了对化学干预的依赖。这篇文章宣告了棉花植物育种新时代的到来,其中尖端的AI、ML和DL技术汇聚在一起,以显著的精度和效率解决长期存在的挑战。
Eftekhari, M., Ma, C., & Orlov, Y. L. (2024). Editorial: Applications of artificial intelligence, machine learning, and deep learning in plant breeding. Frontiers in plant science, 15, 1420938. https://doi.org/10.3389/fpls.2024.1420938
Davidson, S. J., Saggese, T., & Krajňáková, J. (2024). Deep learning for automated segmentation and counting of hypocotyl and cotyledon regions in mature Pinus radiata D. Don. somatic embryo images. Frontiers in plant science, 15, 1322920. https://doi.org/10.3389/fpls.2024.1322920
Artemenko NV, Genaev MA, Epifanov RU, Komyshev EG, Kruchinina YV, Koval VS, Goncharov NP, Afonnikov DA. Image-based classification of wheat spikes by glume pubescence using convolutional neural networks. Front Plant Sci. 2024 Jan 12;14:1336192. doi: 10.3389/fpls.2023.1336192. PMID: 38283969; PMCID: PMC10811101.
Sun X, Li Y, Li G, Jin S, Zhao W, Liang Z, Zhang W. SCGNet: efficient sparsely connected group convolution network for wheat grains classification. Front Plant Sci. 2023 Dec 22;14:1304962. doi: 10.3389/fpls.2023.1304962. PMID: 38186591; PMCID: PMC10766779.
Li Q, Zhou W, Zhang H. Integrating spectral and image information for prediction of cottonseed vitality. Front Plant Sci. 2023 Nov 13;14:1298483. doi: 10.3389/fpls.2023.1298483. PMID: 38023899; PMCID: PMC10679674.
Qi H, Huang Z, Sun Z, Tang Q, Zhao G, Zhu X, Zhang C. Rice seed vigor detection based on near-infrared hyperspectral imaging and deep transfer learning. Front Plant Sci. 2023 Oct 23;14:1283921. doi: 10.3389/fpls.2023.1283921. PMID: 37936942; PMCID: PMC10627025.
Li, R., He, Y., Li, Y., Qin, W., Abbas, A., Ji, R., Li, S., Wu, Y., Sun, X., & Yang, J. (2024). Identification of cotton pest and disease based on CFNet- VoV-GCSP -LSKNet-YOLOv8s: a new era of precision agriculture. Frontiers in plant science, 15, 1348402. https://doi.org/10.3389/fpls.2024.1348402
Ullah N, Khan JA, Almakdi S, Alshehri MS, Al Qathrady M, El-Rashidy N, El-Sappagh S, Ali F. An effective approach for plant leaf diseases classification based on a novel DeepPlantNet deep learning model. Front Plant Sci. 2023 Oct 11;14:1212747. doi: 10.3389/fpls.2023.1212747. PMID: 37900756; PMCID: PMC10600380.