## xgb.plot.shap(data = bike_x, # input data model = model_bike, # xgboost model features = names(shap_result_bike$mean_shap_score[1:10]), # only top 10 var n_col = 3, # layout option plot_loess = T # add red line to plot )
# shap.values(model, X_dataset) returns the SHAP # data matrix and ranked features by mean|SHAP| shap_values shap_values$mean_shap_score shap_values_iris $shap_score
# shap.prep() returns the long-format SHAP data from either model or shap_long_iris # is the same as: using given shap_contrib shap_long_iris # **SHAP summary plot** shap.plot.summary(shap_long_iris, scientific = TRUE) shap.plot.summary(shap_long_iris, x_bound = 1.5, dilute = 10)
# Alternatives options to make the same plot: # option 1: from the xgboost model shap.plot.summary.wrap1(mod1, X = as.matrix(iris[,-5]), top_n = 3)
# option 2: supply a self-made SHAP values dataset # (e.g. sometimes as output from cross-validation) shap.plot.summary.wrap2(shap_score = shap_values_iris, X = X1, top_n = 3)