社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  aigc

CV&AIGC顶会整理 [2024-11-04]

晓飞的算法工程笔记 • 2 周前 • 89 次点击  

今日更新29篇:

  • 计算机视觉会议 18篇
  • 自然语言处理会议 11篇
请注意,大模型的论文多发布于自然语言处理会议中。而由于多模态的发展迅速,部分计算机视觉相关的论文也会发布在自然语言处理顶会中。

计算机视觉会议: 18篇


[0] Beyond Accuracy: Ensuring Correct Predictions With Correct Rationales[cs.CV]
标题:超越准确度:确保正确预测和合理充分的解释
作者:Tang Li, Mengmeng Ma, Xi Peng
链接:http://arxiv.org/abs/2411.00132
代码:https://github.com/deep-real/DCP
备注:In Proceedings of the 38th Conference on Neural Information Processing Systems (NeurIPS 2024)

[1] Pedestrian Trajectory Prediction with Missing Data: Datasets, Imputation, and Benchmarking[cs.CV]
标题:行人轨迹预测中缺失数据的处理:数据集、插值和基准测试
作者:Pranav Singh Chib, Pravendra Singh
链接:http://arxiv.org/abs/2411.00174
代码:https://github.com/Pranav-chib/TrajImpute
备注:Accepted at NeurIPS 2024

[2] Inducing Semi-Structured Sparsity by Masking for Efficient Model Inference in Convolutional Networks[cs.CV]
标题:通过掩码诱导半结构化稀疏性以提高卷积网络中模型推理效率
作者:David A. Danhofer
链接:http://arxiv.org/abs/2411.00288
备注:15 pages, 3 figures; this work will be presented at the NeurIPS 2024 Workshop on Fine-Tuning in Modern Machine Learning: Principles and Scalability (FITML)

[3] Right this way: Can VLMs Guide Us to See More to Answer Questions?[cs.CV]
标题:正是这条路:VLMs能引导我们看到更多,以求解问题吗?
作者:Li Liu, Diji Yang, Sijia Zhong, Kalyana Suma Sree Tholeti, Lei Ding, Yi Zhang, Leilani H. Gilpin
链接:http://arxiv.org/abs/2411.00394
备注:NeurIPS 2024

[4] ConceptFactory: Facilitate 3D Object Knowledge Annotation with Object Conceptualization[cs.CV]
标题:概念工厂:通过物体概念化促进3D对象知识标注
作者:Jianhua Sun, Yuxuan Li, Longfei Xu, Nange Wang, Jiude Wei, Yining Zhang, Cewu Lu
链接:http://arxiv.org/abs/2411.00448
备注:NeurIPS 2024 Track on Datasets and Benchmarks

[5] Target-Guided Adversarial Point Cloud Transformer Towards Recognition Against Real-world Corruptions[cs.CV]
标题:面向对抗性点云转换的靶向引导对抗识别以防现实世界干扰
作者:Jie Wang, Tingfa Xu, Lihe Ding, Jianan Li
链接:http://arxiv.org/abs/2411.00462
代码:https://github.com/Roywangj/APCT
备注:Accepted by NeurIPS 2024; code: this https URL

[6] 3D Equivariant Pose Regression via Direct Wigner-D Harmonics Prediction[cs.CV]
标题:三个月等变姿态回归通过直接Wigner-D谐波预测
作者:Jongmin Lee, Minsu Cho
链接:http://arxiv.org/abs/2411.00543
备注:Accepted to NeurIPS 2024, Project webpage at this http URL

[7] Tracking one-in-a-million: Large-scale benchmark for microbial single-cell tracking with experiment-aware robustness metrics[cs.CV]
标题:追随百万分之一:大规模基准测试针对微生物单细胞跟踪的实验感知鲁棒性指标
作者:J. Seiffarth, L. Blöbaum, R. D. Paul, N. Friederich, A. J. Yamachui Sitcheu, R. Mikut, H. Scharr, A. Grünberger, K. Nöh
链接:http://arxiv.org/abs/2411.00552
备注:17 pages, 4 figures, 3 tables, BioImage Computing @ ECCV 2024

[8] Is Multiple Object Tracking a Matter of Specialization?[cs.CV]
标题:多目标跟踪是否是专业化的产物?
作者:Gianluca Mancusi, Mattia Bernardi, Aniello Panariello, Angelo Porrello, Rita Cucchiara, Simone Calderara
链接:http://arxiv.org/abs/2411.00553
备注:NeurIPS 2024

[9] On Deep Learning for Geometric and Semantic Scene Understanding Using On-Vehicle 3D LiDAR[cs.CV]
标题:关于使用车内3D激光雷达实现的几何和语义场景理解深度学习
作者:Li Li
链接:http://arxiv.org/abs/2411.00600
备注:PhD thesis (Durham University, Computer Science), 149 pages (the 2024 BMVA Sullivan Doctoral Thesis Prize runner-up). Includes published content from arXiv:2407.10159 (ECCV 2024 ORAL), arXiv:2303.11203 (CVPR 2023), and arXiv:2406.10068 (3DV 2021), with minor revisions to the examined version: this https URL

[10] pcaGAN: Improving Posterior-Sampling cGANs via Principal Component Regularization[cs.CV]
标题:PCAGAN:通过主成分正则化改进后验抽样cGAN
作者:Matthew C. Bendel, Rizwan Ahmad, Philip Schniter
链接:http://arxiv.org/abs/2411.00605
代码:https://github.com/matt-bendel/pcaGAN
备注:To appear at NeurIPS 2024

[11] PCoTTA: Continual Test-Time Adaptation for Multi-Task Point Cloud Understanding[cs.CV]
标题:PCoTTA:多任务点云理解的持续测试时自适应
作者:Jincen Jiang, Qianyu Zhou, Yuhang Li, Xinkui Zhao, Meili Wang, Lizhuang Ma, Jian Chang, Jian Jun Zhang, Xuequan Lu
链接:http://arxiv.org/abs/2411.00632
备注:Accepted to NeurIPS 2024

[12] Event-guided Low-light Video Semantic Segmentation[cs.CV]
标题:事件引导的低光照视频语义分割
作者:Zhen Yao, Mooi Choo Chuah
链接:http://arxiv.org/abs/2411.00639
备注:12 pages, 5 figures, Accepted to IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2025

[13] Towards High-fidelity Head Blending with Chroma Keying for Industrial Applications[cs.CV]
标题:朝着工业应用的高保真头混合与实时抠绿技术的研究
作者:Hah Min Lew, Sahng-Min Yoo, Hyunwoo Kang, Gyeong-Moon Park
链接:http://arxiv.org/abs/2411.00652
备注:Accepted by WACV 2025. Project page: this https URL

[14] TaxaBind: A Unified Embedding Space for Ecological Applications[cs.CV]
标题:物种绑定:生态应用的综合嵌入空间
作者:Srikumar Sastry, Subash Khanal, Aayush Dhakal, Adeel Ahmad, Nathan Jacobs
链接:http://arxiv.org/abs/2411.00683
备注:Accepted to WACV 2025

[15] Debiasify: Self-Distillation for Unsupervised Bias Mitigation[cs.CV]
标题:消融偏差:用于无监督偏置缓解的自蒸馏
作者:Nourhan Bayasi, Jamil Fayyad, Ghassan Hamarneh, Rafeef Garbi, Homayoun Najjaran
链接:http://arxiv.org/abs/2411.00711
备注:Accepted at the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV2025)

[16] B-cosification: Transforming Deep Neural Networks to be Inherently Interpretable[cs.CV]
标题:B-可解释化:将深度神经网络转化为固有可解释
作者:Shreyash Arya, Sukrut Rao, Moritz Böhle, Bernt Schiele
链接:http://arxiv.org/abs/2411.00715
代码:https://github.com/shrebox/B-cosification
备注:31 pages, 9 figures, 12 tables, Neural Information Processing Systems (NeurIPS) 2024

[17] Autobiasing Event Cameras[cs.CV]
标题:自动偏置事件摄像头
作者:Mehdi Sefidgar Dilmaghani, Waseem Shariff, Cian Ryan, Joseph Lemley, Peter Corcoran
链接:http://arxiv.org/abs/2411.00729
备注:ECCV 2024 NeVi Workshop

自然语言处理会议: 11篇


[0] Preserving Pre-trained Representation Space: On Effectiveness of Prefix-tuning for Large Multi-modal Models[cs.CV]
标题:保持预训练表示空间:关于Prefix-tuning对大型多模态模型有效性的探讨
作者:Donghoon Kim, Gusang Lee, Kyuhong Shim, Byonghyo Shim
链接:http://arxiv.org/abs/2411.00029
备注:Findings of EMNLP 2024

[1] Topic-Conversation Relevance (TCR) Dataset and Benchmarks[cs.CL]
标题:主题-对话相关性数据集和基准
作者:Yaran Fan, Jamie Pool, Senja Filipi, Ross Cutler
链接:http://arxiv.org/abs/2411.00038
备注:To be published in 38th Conference on Neural Information Processing Systems (NeurIPS 2024) Track on Datasets and Benchmarks

[2] Generating Diverse Negations from Affirmative Sentences[cs.CL]
标题:从肯定句生成多样否定句
作者:Darian Rodriguez Vasquez, Afroditi Papadaki
链接:http://arxiv.org/abs/2411.00056
代码:https://github.com/DarianRodriguez/NegVerse
备注:Accepted at "Adaptive Foundation Models: Evolving AI for Personalized and Efficient Learning" workshop at NeurIPS 2024

[3] LLM4Mat-Bench: Benchmarking Large Language Models for Materials Property Prediction[cs.CL]
标题:LLM4Mat-Bench:材料属性预测的大型语言模型基准测试
作者:Andre Niyongabo Rubungo, Kangming Li, Jason Hattrick-Simpers, Adji Bousso Dieng
链接:http://arxiv.org/abs/2411.00177
代码:https://github.com/vertaix/LLM4Mat-Bench
备注:Accepted at NeurIPS 2024-AI4Mat Workshop. The Benchmark and code can be found at: this https URL

[4] Learning to Rank Salient Content for Query-focused Summarization[cs.CL]
标题:学习为查询聚焦总结排序显著内容
作者:Sajad Sotudeh, Nazli Goharian
链接:http://arxiv.org/abs/2411.00324
备注:Long paper accepted at EMNLP 2024 (Main)

[5] STEM-POM: Evaluating Language Models Math-Symbol Reasoning in Document Parsing[cs.CL]
标题:STEM-POM:评估文档解析中语言模型对数学符号推理的能力评估
作者:Jiaru Zou, Qing Wang, Pratyush Thakur, Nickvash Kani
链接:http://arxiv.org/abs/2411.00387
备注:Accepted to NeurIPS Math-AI 2024

[6] GDTB: Genre Diverse Data for English Shallow Discourse Parsing across Modalities, Text Types, and Domains[cs.CL]
标题:GDTB:面向跨模态、文本类型和领域的英语浅层对话解析的语料库
作者:Yang Janet Liu, Tatsuya Aoyama, Wesley Scivetti, Yilun Zhu, Shabnam Behzad, Lauren Elizabeth Levine, Jessica Lin, Devika Tiwari, Amir Zeldes
链接:http://arxiv.org/abs/2411.00491
备注:Accepted to EMNLP 2024 (main, long); camera-ready version

[7] Multi-expert Prompting Improves Reliability, Safety, and Usefulness of Large Language Models[cs.CL]
标题:多专家提示优化大型语言模型的可靠性、安全性和实用性
作者:Do Xuan Long, Duong Ngoc Yen, Anh Tuan Luu, Kenji Kawaguchi, Min-Yen Kan, Nancy F. Chen
链接:http://arxiv.org/abs/2411.00492
备注:EMNLP 2024 Main Conference

[8] Zipfian Whitening[cs.CL]
标题:Zipfian 移除美白
作者:Sho Yokoi, Han Bao, Hiroto Kurita, Hidetoshi Shimodaira
链接:http://arxiv.org/abs/2411.00680
备注:NeurIPS 2024

[9] Latent Paraphrasing: Perturbation on Layers Improves Knowledge Injection in Language Models[cs.CL]
标题:潜在释义:层扰动提升语言模型中的知识注入
作者:Minki Kang, Sung Ju Hwang, Gibbeum Lee, Jaewoong Cho
链接:http://arxiv.org/abs/2411.00686
备注:NeurIPS 2024

[10] Leveraging Large Language Models for Code-Mixed Data Augmentation in Sentiment Analysis[cs.CL]
标题:利用大型语言模型进行情感分析中代码混合数据增强
作者:Linda Zeng
链接:http://arxiv.org/abs/2411.00691
备注:17 pages, 4 figures, 11 tables, To be published in the Proceedings of the Second Workshop on Social Influence in Conversations (SICon 2024), co-located with EMNLP 2024

感谢arxiv.org


Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/175624
 
89 次点击