为了理解此次获奖的两位科学家在机器学习发展过程中,究竟做出了怎样的开创性贡献,让我们一同来回顾深度学习的发展历程,在其中搜寻霍普菲尔德与辛顿的名字。深度学习是机器学习的一个分支,是一种模拟大脑神经网络结构对数据进行表征学习的方法。深度学习源于对人脑工作机制的研究。获得1981年诺贝尔生理学或医学奖的美国神经生理学家休伯尔(David Hubel)和维泽尔(Torsten Wiesel)发现人的视觉系统的信息处理是分级的,人类对高层特征的感知基于低层特征的组合。例如,对人脸的识别经过瞳孔摄入像素(形状判断)抽象出人脸概念——识别为人脸的过程,从低层到高层的特征表达越来越抽象和概念化。这一发现意味着大脑是一个深度架构,认知过程也是深度的,而深度学习恰恰就是通过组合低层特征形成更加抽象的高层特征。深度学习的发展可以分为感知器、神经网络和深度学习等3个阶段。
1943年,美国心理学家麦卡洛克(Warren S. McCulloch)和数理逻辑学家皮茨(Walter Pitts)提出人工神经网络的概念,并构建了人工神经元的数学模型,即MCP模型,从而开创了人工神经网络研究的时代。1949年,加拿大心理学家赫布(Donald Hebb)描述了突触可塑性的基本原理,从神经科学理论上解释了学习过程中大脑神经细胞所发生的变化。赫布理论是人工神经网络的生物学基础。1958年,罗森布拉特在康奈尔航空实验室发明感知器算法,这是世界上第一个具有完整算法描述的神经网络学习算法。感知器算法是简单配置的单层神经网络,可以区分三角形等基本形状。但是,受限于计算机硬件,感知器算法在当时无法被广泛应用。1969年,明斯基和佩珀特(Seymour Papert)证明感知器不能解决简单的异或(XOR)等线性不可分问题,感知器研究随之在20世纪70年代陷入低谷。
1959年,休伯尔和维泽尔在研究猫的视觉神经系统时发现,在大脑的初级视觉皮层中存在两种细胞:简单细胞和复杂细胞,其中,简单细胞感知光照信息,复杂细胞感知运动信息。受此启发,1980年日本计算机科学家福岛邦彦(Kunihiko Fukushima)提出了一个网络模型——“神经认知机”(Neocognitron)。这种网络分成多层,每层由一种神经元组成。在网络内部,两种神经元交替出现,分别用来提取图形信息和组合图形信息。这两种神经元后来分别演化成卷积层(Convolution Layer)和提取层(Pooling Layer)。然而,这个网络的神经元都是人工设计的而不能根据计算结果自动调整,所以只能识别少量简单数字而不具备学习能力。
1982年,美国物理学家霍普菲尔德(John J. Hopfield)基于统计物理提出了有少量记忆能力的霍普菲尔德神经网络模型,开创性地论证了按照赫布法则设计权重的神经网络稳定性问题。同年,芬兰计算机科学家科霍宁(Teuvo Kohonen)通过模拟大脑神经元的信号处理机制,提出了自组织映射网络,被用于数据分析和数据探索,其第一个应用领域是语音分析。科霍宁的关键发明是引入了一个系统模型,包含一个实现赢家通吃功能的竞争性神经网络和一个实现可塑性控制的子系统。1987年,美国科学家格罗斯伯格(Stephen Grossberg)和卡彭特(Gail Carpenter)提出了自适应共振理论网络,通过让已知信息和未知信息发生“共振”,从已知信息推测未知信息来实现类比学习。然而,这些神经网络存在学习效率不高、需要不断优化设计、网络记忆容量小等不足,实际应用范围有限。
1986年,美国心理学家鲁姆哈特(David Rumelhart)、计算机科学家威廉姆斯(Ronald Williams)和加拿大认知心理学家及计算机科学家辛顿(Geoffrey E. Hinton)共同提出反向传播算法(BP算法)。BP算法通过梯度的链式法则使输出结果和真实值之间的差异反馈到每一层的权重中,从而让每一层函数都能像感知机那样得到训练。BP算法阶段性解决了神经网络自适应、自主学习的难题。1989年,贝尔实验室的法国计算机科学家杨立昆(Yann LeCun)第一次成功实现了神经网络的实践应用。他将卷积神经网络与BP算法结合,提出LeNet网络。20世纪90年代,美国邮政署将LeNet网络用于自动读取信封上的邮政编码。然而,基于BP算法的神经网络仅能求解局部最优,而且这种情况随着网络层数的增加越来越严重,这一问题制约了神经网络的发展。
2006年,辛顿提出深度学习算法,通过无监督学习和逐层预训练的方式有效降低了训练难度,从而解决了BP神经网络难以达到全局最优的问题。2012年,辛顿的研究小组采用深度学习赢得了ImageNet图像分类比赛的冠军,准确率超出第二名10%以上,在计算机视觉领域产生极大震动,引发了深度学习的热潮。2013年,《麻省理工科技评论》将深度学习列为年度世界十大技术突破之首。如今,深度学习已经被广泛用于搜索引擎、语音识别、自动机器翻译、自然语言处理、自动驾驶、人脸识别等领域,是人工智能最热门的研究方向之一。
“获奖者的工作已经产生了巨大的效益。在物理学领域,我们将人工神经网络应用于广泛的领域,例如开发具有特定属性的新材料。”2024年诺贝尔物理学奖委员会主席穆恩斯(Ellen Moons) 如是说。
· END ·
本文作者为中国科协创新战略研究院博士后王楠、中国科协创新战略研究院研究员王国强。
本文节选自《智能时代的算法发展》,微信公众号发表时有改动。文中图片均来自瑞典皇家科学院。