社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  机器学习算法

保真度高达~98%,广工大「AI+光学」研究登Nature子刊,深度学习赋能非正交光复用

ScienceAI • 9 月前 • 177 次点击  

ScienceAI 设为星标

第一时间掌握

新鲜的 AI for Science 资讯


编辑 | X

通道之间的正交性在光复用中扮演着关键的角色。它确保了不同通道之间的信号不会相互干扰,从而实现了高效的数据传输。因此,光复用系统可以同时传输多个通道的数据,提高了光纤的利用率。然而,它不可避免地施加了复用容量的上限。

在此,广东工业大学通感融合光子技术教育部重点实验室开发一种基于深度神经网络的多模光纤(MMF)上的非正交光复用,称为散斑光场检索网络(Speckle light field retrieval network,SLRnet),它可以学习包含信息编码的多个非正交输入光场与其对应的单强度输出之间的复杂映射关系。

通过原理验证实验,SLRnet 可以有效解决 MMF 上非正交光复用的不适定问题,可以利用单发散斑输出明确地检索由相同偏振、波长和空间位置介导的多个非正交输入信号,保真度高达 ~ 98%。这一研究为利用非正交通道实现高容量光复用迈出了重要一步。

该研究不仅将激发光学和光子学领域的各种潜在应用,还将激发信息科学与技术更广泛学科的探索。

相关研究以《Non-orthogonal optical multiplexing empowered by deep learning》为题,于 2024 年 2 月 21 日发表在《Nature Communications》上。

论文链接:https://www.nature.com/articles/s41467-024-45845-4

光复用问题

复用(Multiplexing)是光通信的基石,其中复用通道之间的物理正交性是大规模编码信息传输的先决条件。

考虑到多个正交信号的解复用(Demultiplexing),传输矩阵方法(例如 MMF)甚至可以在强散射介质上解决这个问题。

最近,深度学习已广泛应用于光学和光子学领域,用于光学器件和计算光学的逆向设计。具体来说,深度神经网络已被用来提高多重散射介质上正交复用的性能。

然而,迄今为止,所有报道的复用场景都严格依赖于多路复用通道之间的物理正交性。目前还没有尝试利用深度学习的非线性建模能力来实现 MMF 上的非正交光复用。

不幸的是,即使在单模光纤中由相同偏振或波长介导的非正交信道的复用仍然非常具有挑战性,这是由于缺乏有效的解复用方法或数字信号处理负担过重。因此,开发一种新的方法来解码非正交输入通道中编码的信息对于最终的光复用至关重要。

基于深度神经网络的 MMF 上的非正交光复用

在此,研究人员证明了在 SLRnet 的支持下可以通过 MMF 实现初步的非正交光复用。

作为概念验证演示,可以利用非正交输入通道实现通过 MMF 的信息复用传输,包括一般自然场景图像、不相关的随机二进制数据和不属于同一类型训练数据集的图像,有利于实现光信息的非正交复用传输。

通过数据驱动技术在非正交输入通道和输出之间建立复杂的关系,训练有素的深度神经网络只需使用单次输出强度即可检索非正交通道的编码信息。即使是共享相同偏振、波长和输入空间区域的非正交复用通道也可以被有效地解码。

图 1:MMF 上的非正交光复用示意图。(来源:论文)

神经网络架构

深度神经网络能够从 MMF 的单个散斑输出中检索非正交光复用信号。由任意偏振组合介导的多个幅度和相位编码信息在 MMF 中传播后可以被 SLRnet 有效地检索。

如图 2a 所示,即使是具有相同偏振、波长和输入空间区域的非正交输入通道的典型场景也可以被显式解码。这是通过深度神经网络实现的,其架构如图 2b 所示,它是根据 MMF 独特的多重散射过程的 Unet 的变体。它由全连接(FC)层和 ResUnet 组成。

图 2:通过深度学习实现 MMF 上的非正交光复用。(来源:论文)

实验结果

首先考虑 MMF 长度为 1m 的情况。图 3a 展示了 SLRnet 训练过程中具有任意偏振态组合的两个复用光场通道的检索保真度的演变。总的来说,在幅度和相位维度上将有四个编码通道,根据偏振状态,它们可以是非正交的。检索到的保真度是通过皮尔逊相关系数(PCC)来衡量的。

图 3:使用 SLRnet 的非正交复用性能。(来源:论文)

从图中可以看出,使用相同的 SLRnet 训练配置检索到的 PCC 在 100 个 epoch 后的演化大于 0.97。同时,十二个复用场景的检索保真度的演变基本相同,这展示了非正交复用对于任意偏振组合的出色稳健性。

此外,图 3b 提供了分别使用不同的偏振组合在每个幅度和相位复用通道中检索到的保真度。幅度和相位维度上的平均检索保真度几乎相同( ~ 0.98),这凸显了 SLRnet 对多个非正交输入通道中编码的信息进行解复用的能力。

为了对波前编码的检索信息进行 sensory 评估,四种偏振组合(0° 和 0°、0° 和 10°、0° 和 90° 以及 0° 和椭圆)的典型解复用结果如图 4 所示。

图 4:1 m MMF 上的非正交复用结果。(来源:论文)

可以看出,使用相同偏振在输入波前的幅度和相位上复用的四个灰度图像可以利用单次散斑输出有效地解复用。在不同偏振组合下检索到的其他结果的保真度相似,这表明即使编码波前被 MMF 扰乱,SLRnet 也能够实现前所未有的非正交输入通道复用。

图 5:50 m MMF 上的非正交复用结果。(来源:论文)

为了进一步巩固 SLRnet 在更现实的场景中的优越性,提出了在 50 m MMF 上使用相同偏振态的非正交光复用结果,如图 5 所示。从图 4 和图 5 可以看出,1 m MMF 的解复用结果比 50 m 情况要好,这是因为较长的 MMF 的散射特性更容易受到环境的影响。通过优化网络结构可以进一步提高解复用性能。研究表明,SLRnet 是 MMF 中复用非正交信道的有效手段。

图 6:一般自然场景图像和不属于 ImageNet 数据库的图像在 1 m MMF 上非正交复用的结果。(来源:论文)

最后,展示 SLRnet 对于不同图像集的通用性,研究表明 SLRnet 具有良好的泛化性。

尽管现阶段所提出的基于 MMF 的非正交光复用概念不能直接用于通常需要统一保真度的医疗诊断,但高精度的非相关二进制数字信息的非正交复用表明,通过 MMF 实现光信息的非正交复用传输向前迈进了一步。

该研究不仅可以为利用高吞吐量 MMF 进行通信和信息处理铺平道路,而且还可能为光学及其他领域的光复用提供范式转变,这可以大大提高光学系统的自由度和容量。

人工智能 × [ 生物 神经科学 数学 物理 化学 材料 ]

「ScienceAI」关注人工智能与其他前沿技术及基础科学的交叉研究与融合发展

欢迎注标星,并点击右下角点赞在看

点击读原文,加入专业从业者社区,以获得更多交流合作机会及服务。

Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/168101
 
177 次点击