虽然已经发布近一周时间,OpenAI 视频生成大模型 Sora 的影响仍在继续!
其中,Sora 研发负责人之一 Bill Peebles 与纽约大学助理教授谢赛宁撰写的 DiT(扩散 Transformer)论文《Scalable Diffusion Models with Transformers》被认为是此次 Sora 背后的重要技术基础之一。该论文被 ICCV 2023 接收。

这两天,DiT 论文和 GitHub 项目的热度水涨船高,重新收获大量关注。
论文出现在 PapersWithCode 的 Trending Research 榜单上,星标数量已近 2700;还登上了 GitHub Trending 榜单,星标数量每日数百增长,Star 总量已超 3000。

来源:https://paperswithcode.com/

来源:https://github.com/facebookresearch/DiT
这篇论文最早的版本是 2022 年 12 月,2023 年 3 月更新了第二版。当时,扩散模型在图像生成方面取得了惊人的成果,几乎所有这些模型都使用卷积 U-Net 作为主干。
因此,论文的目的是探究扩散模型中架构选择的意义,并为未来的生成模型研究提供经验基线。该研究表明,U-Net 归纳偏置对扩散模型的性能不是至关重要的,并且可以很容易地用标准设计(如 transformer)取代。
具体来说,研究者提出了一种基于 transformer 架构的新型扩散模型 DiT,并训练了潜在扩散模型,用对潜在 patch 进行操作的 Transformer 替换常用的 U-Net 主干网络。他们通过以 Gflops 衡量的前向传递复杂度来分析扩散 Transformer (DiT) 的可扩展性。

研究者尝试了四种因模型深度和宽度而异的配置:DiT-S、DiT-B、DiT-L 和 DiT-XL。

他们发现,通过增加 Transformer 深度 / 宽度或增加输入 token 数量,具有较高 Gflops 的 DiT 始终具有较低的 FID。

除了良好的可扩展性之外,DiT-XL/2 模型在 class-conditional ImageNet 512×512 和 256×256 基准上的性能优于所有先前的扩散模型,在后者上实现了 2.27 的 FID SOTA 数据。

质量、速度、灵活性更好的 SiT
此外,DiT 还在今年 1 月迎来了升级!谢赛宁及团队推出了 SiT(Scalable Interpolant Transformer,可扩展插值 Tranformer),相同的骨干实现了更好的质量、速度和灵活性。
谢赛宁表示,SiT 超越了标准扩散并通过插值来探索更广阔的设计空间。

该论文标题为《SiT: Exploring Flow and Diffusion-based Generative Models with Scalable Interpolant Transformers》。

简单来讲,SiT 将灵活的插值框架集成到了 DiT 中,从而能够对图像生成中的动态传输进行细微的探索。SiT 在 ImageNet 256 的 FID 为 2.06,将基于插值的模型推向了新的高度。

论文一作、纽约大学本科生 Nanye Ma 对这篇论文进行了解读。本文认为,随机插值为扩散和流提供了统一的框架。但又注意到, 基于 DDPM(去噪扩散概率模型)的 DiT 与较新的基于插值的模型之间存在性能差异。因此,研究者想要探究性能提升的来源是什么?

他们通过设计空间中的一系列正交步骤,逐渐地从 DiT 模型过渡到 SiT 模型来解答这一问题。同时仔细评估了每个远离扩散模型的举措对性能的影响。
研究者发现,插值和采样器对性能的影响最大。当将插值(即分布路径)从方差保留切换到线性以及将采样器从确定性切换到随机性时,他们观察到了巨大的改进。

对于随机采样,研究者表明扩散系数不需要在训练和采样之间绑定,在推理时间方面可以有很多选择。同时确定性和随机采样器在不同的计算预算下各有其优势。

最后,研究者将 SiT 描述为连续、速度可预测、线性可调度和 SDE 采样的模型。与扩散模型一样,SiT 可以实现性能提升,并且优于 DiT。

更多关于 DiT 和 SiT 的内容请参阅原始论文。
若觉得还不错的话,请点个 “赞” 或 “在看” 吧
论文指导班
论文指导班面向那些没有导师指导、需要升学申博的朋友,指导学员从零开始调研相关方向研究、尝试idea、做实验、写论文,指导老师会提供一些idea、代码实现部分的指导、论文写作指导和修改,但整体仍然是由学员自主完成。需要说明的是,论文指导班并非帮你写论文,或者直接给一篇论文让你挂名,我们不会做任何灰色产业,因此,想直接买论文或挂名的朋友请勿联系。
指导老师:
海外QS Top-60某高校人工智能科学博士在读, 师从IEEE Fellow,曾在多家AI企业担任研究实习生和全职算法研究员,具备极强的学术届和工业界综合背景。研究领域主要包括通用计算机视觉模型的高效设计,训练,部署压缩以及在目标检测,语义分割等下游任务应用,具体包括模型压缩 (知识蒸馏,模型搜索量化剪枝), 通用视觉模型与应用(VIT, 目标检测,语义分割), AI基础理论(AutoML, 数据增广,无监督/半监督/长尾/噪声/联邦学习)等;共发表和审稿中的15余篇SCI国际期刊和顶级会议论文,包括NeurIPS,CVPR, ECCV,ICLR,AAAI, ICASSP等CCF-A/B类会议。发明专利授权2项。
长期担任计算机视觉、人工智能、多媒体领域顶级会议CVPR, ECCV, NeurIPS, AAAI, ACM MM等审稿人。指导研究生本科生发表SCI, EI,CCF-C类会议和毕业论文累计30余篇,有丰富的保研,申博等方面经验,成功辅导学员赴南洋理工,北大,浙大等深造。
涉及范围:CCF会议A类/SCI一区、CCF会议B类/SCI二区、CCF会议C类/SCI三区、SCI四区、EI期刊、EI会议、核心期刊、研究生毕业设计
报名请扫描下方二维码了解详细情况,备注:“论文班报名”。

如果有其他想要当论文指导老师的朋友,请发简历给我,同样扫描上方二维码,备注:“论文指导老师”。基本条件:已发表两篇以上一作顶会,或3-5篇其他级别的一作论文,学历在985博士及以上。