社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  机器学习算法

科研进展 | 基于NWP短期预报的深度学习站点降水后处理

气象学家 • 11 月前 • 214 次点击  

  第一时间获取气象科研资讯

气象学家公众号交流群

加入


后处理方法可以降低数值天气预报(NWP)的系统性偏差。通常,降水后处理方法依赖于数值天气预报(NWP)网格预报产品,在准确预报局地站点降水方面表现不佳。

近日,Atmospheric Research在线发表了题为“Deep-learning post-processing of short-term station precipitation based on NWP forecasts”的文章。论文基于华北地区390个气象站的观测降水和ECMWF-HRES短期(0-3天)预报数据,利用深度学习算法构建了一个基于站点的降水后处理模型(Station-based Precipitation Post-processing Model,SPPM)。此模型将多层大气预报变量和以气象站为中心的小区域地理变量作为预报因子,研究使用逐层相关传播(Layer-wise Relevance Propagation,LRP)技术验证了预测因子的敏感性。

实验结果显示,在2021年夏季的测试数据集上,站点降水后处理模型(SPPM)在多个降水阈值下的TS评分相较于ECMWF预报均有所提升,尤其在强降水的预报中表现出显著的提升效果,且虚报小雨事件较少。模型改进主要集中在华北地区的中部、东部和南部,但在站点稀疏且训练数据相对稀缺的西部站点上,提升效果相对较小。

通过对模型可解释性结果的分析,发现ECMWF的降水预报对SPPM模型的决策产生了重要影响;其余变量中,低层环流场和地形信息较为重要,它们通常在很多华北地区强降水个例中起到重要作用。这项可解释性研究方法为其他气象AI模型的可解释性研究提供了有益的参考,为建立更可靠、可解释的气象预报模型提供了一个应用示范。

图1 ECMWF和SPPM的降水预报结果(世界时2021年7月21日12时起报)

图2 LRP方法得到的可解释性结果

该研究成果近期发表于地球-大气科学领域期刊Atmospheric Research (JCR Q1,IF=5.5)。中国科学院大气物理研究所夏江江副研究员为论文通讯作者,刘祺(在读博士)为论文第一作者。项目得到了国家自然科学基金(42275158)、河北省重点研发计划(21375404D)、国家自然科学基金青年科学基金(42005124)的共同资助。


【论文信息】

https://doi.org/10.1016/j.atmosres.2023.107032


点击“阅读原文”查看文章






声明:欢迎转载、转发本号原创内容,可留言区留言或者后台联系小编(微信:gavin7576)进行授权。气象学家公众号转载信息旨在传播交流,其内容由作者负责,不代表本号观点。文中部分图片来源于网络,如涉及作品内容、版权和其他问题,请后台联系小编处理。


往期推荐

 获取ERA5/ERA5-Land再分析数据(36TB/32TB)

 获取全球GPM降水数据,半小时/逐日(4TB)

 获取1998-2019 TRMM 3B42逐日降水数据

 获取最新版本CMIP6降尺度数据集30TB

  EC数据商店推出Python在线处理工具箱

★ EC打造实用气象Python工具Metview

★ 机器学习简介及在短临天气预警中的应用

★ Nature-地球系统科学领域的深度学习及理解

★ 灵魂拷问:ChatGPT对气象人的饭碗是福是祸?

★ 气象局是做啥的?气象局的薪水多少?


Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/166097
 
214 次点击