1. Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris, P., Wang, S., & Yang, L. (2021). Physics-informed machine learning.
Nature Reviews Physics, 3(6), 422–440. https://doi.org/10.1038/s42254-021-00314-5
2. Zhao, W. L., Gentine, P., Reichstein, M., Zhang, Y., Zhou, S., Wen, Y., et al. (2019). Physics-Constrained Machine Learning of Evapotranspiration. Geophysical Research Letters, 46(24), 14496–14507. https://doi.org/10.1029/2019GL085291
3. Huang, S., Xia, J., Wang, Y., Wang, W., Zeng, S., She, D., & Wang, G. (2022). Coupling Machine Learning Into Hydrodynamic Models to Improve River Modeling With Complex Boundary Conditions. Water Resources Research, 58(10), e2022WR032183. https://doi.org/10.1029/2022WR032183