社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  DATABASE

直接上最优解:如何保障MySQL和Redis的数据一致性?

DBAplus社群 • 1 年前 • 281 次点击  


先抛一下结论:在满足实时性的条件下,不存在两者完全保存一致的方案,只有最终一致性方案。根据网上的众多解决方案,总结出 6 种,直接看目录:



不好的方案


1、先写 MySQL,再写 Redis



如图所示:


  • 这是一副时序图,描述请求的先后调用顺序;


  • 橘黄色的线是请求 A,黑色的线是请求 B;


  • 橘黄色的文字,是 MySQL 和 Redis 最终不一致的数据;


  • 数据是从 10 更新为 11;


  • 后面所有的图,都是这个含义,不再赘述。


请求 A、B 都是先写 MySQL,然后再写 Redis,在高并发情况下,如果请求 A 在写 Redis 时卡了一会,请求 B 已经依次完成数据的更新,就会出现图中的问题。


这个图已经画得很清晰了,我就不用再去啰嗦了吧,不过这里有个前提,就是对于读请求,先去读 Redis,如果没有,再去读 DB,但是读请求不会再回写 Redis。大白话说一下,就是读请求不会更新 Redis。


2、先写 Redis,再写 MySQL



同“先写 MySQL,再写 Redis”,看图可秒懂。


3、先删除 Redis,再写 MySQL


这幅图和上面有些不一样,前面的请求 A 和 B 都是更新请求,这里的请求 A 是更新请求,但是请求 B 是读请求,且请求 B 的读请求会回写 Redis。



请求 A 先删除缓存,可能因为卡顿,数据一直没有更新到 MySQL,导致两者数据不一致。


这种情况出现的概率比较大,因为请求 A 更新 MySQL 可能耗时会比较长,而请求 B 的前两步都是查询,会非常快。


好的方案


1、先删除 Redis,再写 MySQL,再删除 Redis


对于“先删除 Redis,再写 MySQL”,如果要解决最后的不一致问题,其实再对 Redis 重新删除即可,这个也是大家常说的“缓存双删”。



为了便于大家看图,对于蓝色的文字,“删除缓存 10”必须在“回写缓存10”后面,那如何才能保证一定是在后面呢?网上给出的第一个方案是,让请求 A 的最后一次删除,等待 500ms。


对于这种方案,看看就行,反正我是不会用,太 Low 了,风险也不可控。


那有没有更好的方案?我建议异步串行化删除,即删除请求入队列。



异步删除对线上业务无影响,串行化处理保障并发情况下正确删除。


如果双删失败怎么办,网上有给 Redis 加一个缓存过期时间的方案,这个不敢苟同。个人建议整个重试机制,可以借助消息队列的重试机制,也可以自己整个表,记录重试次数,方法很多。


简单小结一下:


  • “缓存双删”不要用无脑的 sleep 500 ms;


  • 通过消息队列的异步&串行,实现最后一次缓存删除;


  • 缓存删除失败,增加重试机制。


2、先写 MySQL,再删除 Redis



对于上面这种情况,对于第一次查询,请求 B 查询的数据是 10,但是 MySQL 的数据是 11,只存在这一次不一致的情况,对于不是强一致性要求的业务,可以容忍。(什么情况下不能容忍呢,比如秒杀业务、库存服务等。)


当请求 B 进行第二次查询时,因为没有命中 Redis,会重新查一次 DB,然后再回写到 Reids。



这里需要满足 2 个条件:


  • 缓存刚好自动失效;

  • 请求 B 从数据库查出 10,回写缓存的耗时,比请求 A 写数据库,并且删除缓存的还长。


对于第二个条件,我们都知道更新 DB 肯定比查询耗时要长,所以出现这个情况的概率很小,同时满足上述条件的情况更小。


3、先写 MySQL,通过 Binlog,异步更新 Redis


这种方案,主要是监听 MySQL 的 Binlog,然后通过异步的方式,将数据更新到 Redis,这种方案有个前提,查询的请求,不会回写 Redis。



这个方案,会保证 MySQL 和 Redis 的最终一致性,但是如果中途请求 B 需要查询数据,如果缓存无数据,就直接查 DB;如果缓存有数据,查询的数据也会存在不一致的情况。


所以这个方案,是实现最终一致性的终极解决方案,但是不能保证实时性。


几种方案比较


我们对比上面讨论的 6 种方案:


1、先写 Redis,再写 MySQL


这种方案,我肯定不会用,万一 DB 挂了,你把数据写到缓存,DB 无数据,这个是灾难性的。


我之前也见同学这么用过,如果写 DB 失败,对 Redis 进行逆操作,那如果逆操作失败呢,是不是还要搞个重试?


2、先写 MySQL,再写 Redis


对于并发量、一致性要求不高的项目,很多就是这么用的,我之前也经常这么搞,但是不建议这么做。


当 Redis 瞬间不可用的情况,需要报警出来,然后线下处理。


3、先删除 Redis,再写 MySQL


这种方式,我还没使用过, 直接忽略吧。


4、先删除 Redis,再写 MySQL,再删除 Redis


这种方式虽然可行,但是感觉好复杂,还要搞个消息队列去异步删除 Redis。


5、先写 MySQL,再删除 Redis


比较推荐这种方式,删除 Redis 如果失败,可以再多重试几次,否则报警出来;这个方案,是实时性中最好的方案,在一些高并发场景中,推荐这种。


6、先写 MySQL,通过 Binlog,异步更新 Redis


对于异地容灾、数据汇总等,建议会用这种方式,比如 binlog + kafka,数据的一致性也可以达到秒级。


纯粹的高并发场景,不建议用这种方案,比如抢购、秒杀等。


结论


  • 实时一致性方案:采用“先写 MySQL,再删除 Redis”的策略,这种情况虽然也会存在两者不一致,但是需要满足的条件有点苛刻,所以是满足实时性条件下,能尽量满足一致性的最优解。


  • 最终一致性方案:采用“先写 MySQL,通过 Binlog,异步更新 Redis”,可以通过 Binlog,结合消息队列异步更新 Redis,是最终一致性的最优解。


作者丨楼仔
来源丨公众号:楼仔(ID:gh_8de52dba3fda)
dbaplus社群欢迎广大技术人员投稿,投稿邮箱:editor@dbaplus.cn

Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/163207
 
281 次点击