# Test to check if the Gender has only Male or Femaledef test_Gender():assert df['Gender'].unique().tolist()==['Male','Female']
#Test for checking if the Married columns has only two values either Yes or Nodef test_Married():assert df['Married'].unique().tolist()==['Yes','No']
# Test for checking if Applicant Income is less than zerodef test_ApplicantIncome():assert df[df['ApplicantIncome']<0].shape[0]==0
#Test for checking if the Married columns has only two values either Male or Femaledef test_PropertyArea():assert df['Property_Area'].unique().tolist()==['Rural','Urban','Semiurban']
# Test for checking if Loan Amount is more than 500def test_LoanAmountTerm():assert df[df['Loan_Amount_Term']>600].shape[0]==0
# This workflow will install Python dependencies, run tests and lint with a single version of Python# For more information see: https://help.github.com/actions/language-and-framework-guides/using-python-with-github-actionsname:AutomatedTestingWithPyteston: push: branches:[ main ] jobs: build: runs-on: ubuntu-latest steps:- uses: actions/checkout@v2- name:Set up Python3.9 uses: actions/setup-python@v2with: python-version:3.9- name:Install dependencies run:| python -m pip install --upgrade pip pip install flake8 pytestif[-f requirements.txt ];then pip install -r requirements.txt;fi- name:Lintwith flake8 run:|# stop the build if there are Python syntax errors or undefined names flake8 .--count --select=E9,F63,F7,F82 --show-source --statistics# exit-zero treats all errors as warnings. The GitHub editor is 127 chars wide flake8 .--count --exit-zero --max-complexity=10--max-line-length=127--statistics- name:Testwith pytest run:| pytest