凡是搞计量经济的,都关注这个号了
稿件:econometrics666@126.com
所有计量经济圈方法论丛的code程序, 宏微观数据库和各种软
件都放在社群里.欢迎到计量经济圈社群交流访问.
一个『机器学习领域综述大列表』,涵盖了自然语言处理、推荐系统、计算机视觉、深度学习、强化学习等主题。
另外发现源repo中NLP相关的综述不是很多,于是把一些觉得还不错的文章添加进去了,重新整理更新在 AI-Surveys[1] 中。『收藏等于看完』系列,来看看都有哪些吧, enjoy!自然语言处理
深度学习:Recent Trends in Deep Learning Based Natural Language Processing[2]
文本分类:Deep Learning Based Text Classification: A Comprehensive Review[3]
文本生成:Survey of the SOTA in Natural Language Generation: Core tasks, applications and evaluation[4]
文本生成:Neural Language Generation: Formulation, Methods, and Evaluation[5]
迁移学习:Exploring Transfer Learning with T5: the Text-To-Text Transfer Transformer[6] (Paper[7])
迁移学习:Neural Transfer Learning for Natural Language Processing[8]
知识图谱:A Survey on Knowledge Graphs: Representation, Acquisition and Applications[9]
命名实体识别:A Survey on Deep Learning for Named Entity Recognition[10]
-
关系抽取:More Data, More Relations, More Context and More Openness: A Review and Outlook for Relation Extraction[11]
情感分析:Deep Learning for Sentiment Analysis : A Survey[12]
ABSA情感分析:Deep Learning for Aspect-Level Sentiment Classification: Survey, Vision, and Challenges[13]
文本匹配:Neural Network Models for Paraphrase Identification, Semantic Textual Similarity, Natural Language Inference, and Question Answering[14]
阅读理解:Neural Reading Comprehension And Beyond[15]
阅读理解:Neural Machine Reading Comprehension: Methods and Trends[16]
机器翻译:Neural Machine Translation: A Review[17]
机器翻译:A Survey of Domain Adaptation for Neural Machine Translation[18]
预训练模型:Pre-trained Models for Natural Language Processing: A Survey[19]
注意力机制:An Attentive Survey of Attention Models[20]
注意力机制:An Introductory Survey on Attention Mechanisms in NLP Problems[21]
注意力机制:Attention in Natural Language Processing[22]
BERT:A Primer in BERTology: What we know about how BERT works[23]
Beyond Accuracy: Behavioral Testing of NLP Models with CheckList[24]
Evaluation of Text Generation: A Survey[25]
推荐系统
Recommender systems survey[26]
Deep Learning based Recommender System: A Survey and New Perspectives[27]
Are We Really Making Progress? A Worrying Analysis of Neural Recommendation Approaches[28]
A Survey of Serendipity in Recommender Systems[29]
Diversity in Recommender Systems – A survey[30]
A Survey of Explanations in Recommender Systems[31]
深度学习
A State-of-the-Art Survey on Deep Learning Theory and Architectures[32]
知识蒸馏:Knowledge Distillation: A Survey[33]
模型压缩:Compression of Deep Learning Models for Text: A Survey[34]
迁移学习:A Survey on Deep Transfer Learning[35]
神经架构搜索:A Comprehensive Survey of Neural Architecture Search-- Challenges and Solutions[36]
-
神经架构搜索:Neural Architecture Search: A Survey[37]
计算机视觉
目标检测:Object Detection in 20 Years[38]
对抗性攻击:Threat of Adversarial Attacks on Deep Learning in Computer Vision[39]
自动驾驶:Computer Vision for Autonomous Vehicles: Problems, Datasets and State of the Art[40]
强化学习
A Brief Survey of Deep Reinforcement Learning[41]
Transfer Learning for Reinforcement Learning Domains[42]
Review of Deep Reinforcement Learning Methods and Applications in Economics[43]
Embeddings
图:A Comprehensive Survey of Graph Embedding: Problems, Techniques and Applications[44]
文本:From Word to Sense Embeddings:A Survey on Vector Representations of Meaning[45]
文本:Diachronic Word Embeddings and Semantic Shifts[46]
文本:Word Embeddings: A Survey[47]
A Survey on Contextual Embeddings[48]
Meta-learning & Few-shot Learning
A Survey on Knowledge Graphs: Representation, Acquisition and Applications[49]
Meta-learning for Few-shot Natural Language Processing: A Survey[50]
Learning from Few Samples: A Survey[51]
Meta-Learning in Neural Networks: A Survey[52]
A Comprehensive Overview and Survey of Recent Advances in Meta-Learning[53]
Baby steps towards few-shot learning with multiple semantics[54]
Meta-Learning: A Survey[55]
A Perspective View And Survey Of Meta-learning[56]
其他
本文参考文献
[1]AI-Surveys: https://github.com/KaiyuanGao/AI-Surveys
[2]Recent Trends in Deep Learning Based Natural Language Processing: https://arxiv.org/pdf/1708.02709.pdf
[3]Deep Learning Based Text Classification: A Comprehensive Review: https://arxiv.org/pdf/2004.03705
[4]Survey of the SOTA in Natural Language Generation: Core tasks, applications and evaluation: https://www.jair.org/index.php/jair/article/view/11173/26378
[5]Neural Language Generation: Formulation, Methods, and Evaluation: https://arxiv.org/pdf/2007.15780.pdf
[6]Exploring Transfer Learning with T5: the Text-To-Text Transfer Transformer: https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html
[7]Paper: https://arxiv.org/abs/1910.10683
[8]Neural Transfer Learning for Natural Language Processing: https://aran.library.nuigalway.ie/handle/10379/15463
[9]A Survey on Knowledge Graphs: Representation, Acquisition and Applications: https://arxiv.org/abs/2002.00388
[10]A Survey on Deep Learning for Named Entity Recognition: https://arxiv.org/abs/1812.09449
[11]More Data, More Relations, More Context and More Openness: A Review and Outlook for Relation Extraction: https://arxiv.org/abs/2004.03186
[12]Deep Learning for Sentiment Analysis : A Survey: https://arxiv.org/abs/1801.07883
[13]Deep Learning for Aspect-Level Sentiment Classification: Survey, Vision, and Challenges: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8726353
[14]Neural Network Models for Paraphrase Identification, Semantic Textual Similarity, Natural Language Inference, and Question Answering: https://www.aclweb.org/anthology/C18-1328/
[15]Neural Reading Comprehension And Beyond: https://stacks.stanford.edu/file/druid:gd576xb1833/thesis-augmented.pdf
[16]Neural Machine Reading Comprehension: Methods and Trends: https://arxiv.org/abs/1907.01118
[17]Neural Machine Translation: A Review: https://arxiv.org/abs/1912.02047
[18]A Survey of Domain Adaptation for Neural Machine Translation: https://www.aclweb.org/anthology/C18-1111.pdf
[19]Pre-trained Models for Natural Language Processing: A Survey: https://arxiv.org/abs/2003.08271
[20]An Attentive Survey of Attention Models: https://arxiv.org/pdf/1904.02874.pdf
[21]An Introductory Survey on Attention Mechanisms in NLP Problems: https://arxiv.org/abs/1811.05544
[22]Attention in Natural Language Processing: https://arxiv.org/abs/1902.02181
[23]A Primer in BERTology: What we know about how BERT works: https://arxiv.org/pdf/2002.12327.pdf
[24]Beyond Accuracy: Behavioral Testing of NLP Models with CheckList: https://arxiv.org/pdf/2005.04118.pdf
[25]Evaluation of Text Generation: A Survey: https://arxiv.org/pdf/2006.14799.pdf
[26]Recommender systems survey: http://irntez.ir/wp-content/uploads/2016/12/sciencedirec.pdf
[27]Deep Learning based Recommender System: A Survey and New Perspectives: https://arxiv.org/pdf/1707.07435.pdf
[28]Are We Really Making Progress? A Worrying Analysis of Neural Recommendation Approaches: https://arxiv.org/pdf/1907.06902.pdf
[29]A Survey of Serendipity in Recommender Systems: https://www.researchgate.net/publication/306075233_A_Survey_of_Serendipity_in_Recommender_Systems
[30]Diversity in Recommender Systems – A survey: https://papers-gamma.link/static/memory/pdfs/153-Kunaver_Diversity_in_Recommender_Systems_2017.pdf
[31]A Survey of Explanations in Recommender Systems: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.418.9237&rep=rep1&type=pdf
[32]A State-of-the-Art Survey on Deep Learning Theory and Architectures: https://www.mdpi.com/2079-9292/8/3/292/htm
[33]Knowledge Distillation: A Survey: https://arxiv.org/pdf/2006.05525.pdf
[34]Compression of Deep Learning Models for Text: A Survey: https://arxiv.org/pdf/2008.05221.pdf
[35]A Survey on Deep Transfer Learning: https://arxiv.org/pdf/1808.01974.pdf
[36]A Comprehensive Survey of Neural Architecture Search-- Challenges and Solutions: https://arxiv.org/abs/2006.02903
[37]Neural Architecture Search: A Survey: https://arxiv.org/abs/1808.05377
[38]
Object Detection in 20 Years: https://arxiv.org/pdf/1905.05055.pdf
[39]Threat of Adversarial Attacks on Deep Learning in Computer Vision: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8294186
[40]Computer Vision for Autonomous Vehicles: Problems, Datasets and State of the Art: https://arxiv.org/pdf/1704.05519.pdf
[41]A Brief Survey of Deep Reinforcement Learning: https://arxiv.org/pdf/1708.05866.pdf
[42]Transfer Learning for Reinforcement Learning Domains: http://www.jmlr.org/papers/volume10/taylor09a/taylor09a.pdf
[43]Review of Deep Reinforcement Learning Methods and Applications in Economics: https://arxiv.org/pdf/2004.01509.pdf
[44]A Comprehensive Survey of Graph Embedding: Problems, Techniques and Applications: https://arxiv.org/pdf/1709.07604
[45]From Word to Sense Embeddings:A Survey on Vector Representations of Meaning: https://www.jair.org/index.php/jair/article/view/11259/26454
[46]Diachronic Word Embeddings and Semantic Shifts: https://arxiv.org/pdf/1806.03537.pdf
[47]Word Embeddings: A Survey: https://arxiv.org/abs/1901.09069
[48]A Survey on Contextual Embeddings: https://arxiv.org/abs/2003.07278
[49]A Survey on Knowledge Graphs: Representation, Acquisition and Applications: https://arxiv.org/abs/2002.00388
[50]Meta-learning for Few-shot Natural Language Processing: A Survey: https://arxiv.org/abs/2007.09604
[51]Learning from Few Samples: A Survey: https://arxiv.org/abs/2007.15484
[52]Meta-Learning in Neural Networks: A Survey: https://arxiv.org/abs/2004.05439
[53]A Comprehensive Overview and Survey of Recent Advances in Meta-Learning: https://arxiv.org/abs/2004.11149
[54]Baby steps towards few-shot learning with multiple semantics: https://arxiv.org/abs/1906.01905
[55]Meta-Learning: A Survey: https://arxiv.org/abs/1810.03548
[56]A Perspective View And Survey Of Meta-learning: https://www.researchgate.net/publication/2375370_A_Perspective_View_And_Survey_Of_Meta-Learning
[57]A Survey on Transfer Learning: http://202.120.39.19:40222/wp-content/uploads/2018/03/A-Survey-on-Transfer-Learning.pdf
作者:kaiyuan,来源:NewBeeNLP
关于机器学习,参看1.机器学习之KNN分类算法介绍: Stata和R同步实现(附数据和代码),2.机器学习对经济学研究的影响研究进展综述,3.回顾与展望经济学研究中的机器学习,4.最新: 运用机器学习和合成控制法研究武汉封城对空气污染和健康的影响! 5.Top, 机器学习是一种应用的计量经济学方法, 不懂将来面临淘汰危险!6.Top前沿: 农业和应用经济学中的机器学习, 其与计量经济学的比较, 不读不懂你就out了!7.前沿: 机器学习在金融和能源经济领域的应用分类总结,8.机器学习方法出现在AER, JPE, QJE等顶刊上了!9.机器学习第一书, 数据挖掘, 推理和预测,10.从线性回归到机器学习, 一张图帮你文献综述
,11.11种与机器学习相关的多元变量分析方法汇总,12.机器学习和大数据计量经济学, 你必须阅读一下这篇,13.机器学习与Econometrics的书籍推荐, 值得拥有的经典,14.机器学习在微观计量的应用最新趋势: 大数据和因果推断,15.R语言函数最全总结, 机器学习从这里出发,16.机器学习在微观计量的应用最新趋势: 回归模型,17.机器学习对计量经济学的影响, AEA年会独家报道,18.回归、分类与聚类:三大方向剖解机器学习算法的优缺点(附Python和R实现),19.关于机器学习的领悟与反思,
20.机器学习,可异于数理统计,21.
前沿: 比特币, 多少罪恶假汝之手? 机器学习测算加密货币资助的非法活动金额! 22.利用机器学习进行实证资产定价, 金融投资的前沿科学技术! 23.全面比较和概述运用机器学习模型进行时间序列预测的方法优劣!24.用合成控制法, 机器学习和面板数据模型开展政策评估的论文!25.更精确的因果效应识别: 基于机器学习的视角,26.一本最新因果推断书籍, 包括了机器学习因果推断方法, 学习主流和前沿方法,27.如何用机器学习在中国股市赚钱呢? 顶刊文章告诉你方法!28.机器学习和经济学, 技术革命正在改变经济社会和学术研究,29.世界计量经济学院士新作“大数据和机器学习对计量建模与统计推断的挑战与机遇”,30.机器学习已经与政策评估方法, 例如事件研究法结合起来识别政策因果效应了!31.重磅! 汉森教授又修订了风靡世界的“计量经济学”教材, 为博士生们增加了DID, RDD, 机器学习等全新内容!32.几张有趣的图片, 各种类型的经济学, 机器学习, 科学论文像什么样子?33.
机器学习已经用于微观数据调查和构建指标了, 比较前沿!34.两诺奖得主谈计量经济学发展进化, 机器学习的影响, 如何合作推动新想法!35.前沿, 双重机器学习方法DML用于因果推断, 实现它的code是什么?
下面这些短链接文章属于合集,可以收藏起来阅读,不然以后都找不到了。
4年,计量经济圈近1000篇不重类计量文章,
可直接在公众号菜单栏搜索任何计量相关问题,
Econometrics Circle
计量经济圈组织了一个计量社群,有如下特征:热情互助最多、前沿趋势最多、社科资料最多、社科数据最多、科研牛人最多、海外名校最多。因此,建议积极进取和有强烈研习激情的中青年学者到社群交流探讨,始终坚信优秀是通过感染优秀而互相成就彼此的。