社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  机器学习算法

机器学习领域最全综述列表!

计量经济圈 • 2 年前 • 294 次点击  

凡是搞计量经济的,都关注这个号了

稿件:econometrics666@126.com

所有计量经济圈方法论丛的code程序, 宏微观数据库和各种软 件都放在社群里.欢迎到计量经济圈社群交流访问.

一个『机器学习领域综述大列表』,涵盖了自然语言处理、推荐系统、计算机视觉、深度学习、强化学习等主题。
另外发现源repo中NLP相关的综述不是很多,于是把一些觉得还不错的文章添加进去了,重新整理更新在 AI-Surveys[1] 中。
  • ml-surveys: https://github.com/eugeneyan/ml-surveys

  • AI-Surveys: https://github.com/KaiyuanGao/AI-Surveys

『收藏等于看完』系列,来看看都有哪些吧, enjoy!

自然语言处理

  • 深度学习:Recent Trends in Deep Learning Based Natural Language Processing[2]

  • 文本分类:Deep Learning Based Text Classification: A Comprehensive Review[3]

  • 文本生成:Survey of the SOTA in Natural Language Generation: Core tasks, applications and evaluation[4]

  • 文本生成:Neural Language Generation: Formulation, Methods, and Evaluation[5]

  • 迁移学习:Exploring Transfer Learning with T5: the Text-To-Text Transfer Transformer[6] (Paper[7])

  • 迁移学习:Neural Transfer Learning for Natural Language Processing[8]

  • 知识图谱:A Survey on Knowledge Graphs: Representation, Acquisition and Applications[9]

  • 命名实体识别:A Survey on Deep Learning for Named Entity Recognition[10]

  • 关系抽取:More Data, More Relations, More Context and More Openness: A Review and Outlook for Relation Extraction[11]

  • 情感分析:Deep Learning for Sentiment Analysis : A Survey[12]

  • ABSA情感分析:Deep Learning for Aspect-Level Sentiment Classification: Survey, Vision, and Challenges[13]

  • 文本匹配:Neural Network Models for Paraphrase Identification, Semantic Textual Similarity, Natural Language Inference, and Question Answering[14]

  • 阅读理解:Neural Reading Comprehension And Beyond[15]

  • 阅读理解:Neural Machine Reading Comprehension: Methods and Trends[16]

  • 机器翻译:Neural Machine Translation: A Review[17]

  • 机器翻译:A Survey of Domain Adaptation for Neural Machine Translation[18]

  • 预训练模型:Pre-trained Models for Natural Language Processing: A Survey[19]

  • 注意力机制:An Attentive Survey of Attention Models[20]

  • 注意力机制:An Introductory Survey on Attention Mechanisms in NLP Problems[21]

  • 注意力机制:Attention in Natural Language Processing[22]

  • BERT:A Primer in BERTology: What we know about how BERT works[23]

  • Beyond Accuracy: Behavioral Testing of NLP Models with CheckList[24]

  • Evaluation of Text Generation: A Survey[25]

推荐系统

  • Recommender systems survey[26]

  • Deep Learning based Recommender System: A Survey and New Perspectives[27]

  • Are We Really Making Progress? A Worrying Analysis of Neural Recommendation Approaches[28]

  • A Survey of Serendipity in Recommender Systems[29]

  • Diversity in Recommender Systems – A survey[30]

  • A Survey of Explanations in Recommender Systems[31]

深度学习

  • A State-of-the-Art Survey on Deep Learning Theory and Architectures[32]

  • 知识蒸馏:Knowledge Distillation: A Survey[33]

  • 模型压缩:Compression of Deep Learning Models for Text: A Survey[34]

  • 迁移学习:A Survey on Deep Transfer Learning[35]

  • 神经架构搜索:A Comprehensive Survey of Neural Architecture Search-- Challenges and Solutions[36]

  • 神经架构搜索:Neural Architecture Search: A Survey[37]

计算机视觉

  • 目标检测:Object Detection in 20 Years[38]

  • 对抗性攻击:Threat of Adversarial Attacks on Deep Learning in Computer Vision[39]

  • 自动驾驶:Computer Vision for Autonomous Vehicles: Problems, Datasets and State of the Art[40]

强化学习

  • A Brief Survey of Deep Reinforcement Learning[41]

  • Transfer Learning for Reinforcement Learning Domains[42]

  • Review of Deep Reinforcement Learning Methods and Applications in Economics[43]

Embeddings

  • 图:A Comprehensive Survey of Graph Embedding: Problems, Techniques and Applications[44]

  • 文本:From Word to Sense Embeddings:A Survey on Vector Representations of Meaning[45]

  • 文本:Diachronic Word Embeddings and Semantic Shifts[46]

  • 文本:Word Embeddings: A Survey[47]

  • A Survey on Contextual Embeddings[48]

Meta-learning & Few-shot Learning

  • A Survey on Knowledge Graphs: Representation, Acquisition and Applications[49]

  • Meta-learning for Few-shot Natural Language Processing: A Survey[50]

  • Learning from Few Samples: A Survey[51]

  • Meta-Learning in Neural Networks: A Survey[52]

  • A Comprehensive Overview and Survey of Recent Advances in Meta-Learning[53]

  • Baby steps towards few-shot learning with multiple semantics[54]

  • Meta-Learning: A Survey[55]

  • A Perspective View And Survey Of Meta-learning[56]

其他

  • A Survey on Transfer Learning[57]

本文参考文献

[1]AI-Surveys: https://github.com/KaiyuanGao/AI-Surveys

[2]Recent Trends in Deep Learning Based Natural Language Processing: https://arxiv.org/pdf/1708.02709.pdf

[3]Deep Learning Based Text Classification: A Comprehensive Review: https://arxiv.org/pdf/2004.03705

[4]Survey of the SOTA in Natural Language Generation: Core tasks, applications and evaluation: https://www.jair.org/index.php/jair/article/view/11173/26378

[5]Neural Language Generation: Formulation, Methods, and Evaluation: https://arxiv.org/pdf/2007.15780.pdf

[6]Exploring Transfer Learning with T5: the Text-To-Text Transfer Transformer: https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html

[7]Paper: https://arxiv.org/abs/1910.10683

[8]Neural Transfer Learning for Natural Language Processing: https://aran.library.nuigalway.ie/handle/10379/15463

[9]A Survey on Knowledge Graphs: Representation, Acquisition and Applications: https://arxiv.org/abs/2002.00388

[10]A Survey on Deep Learning for Named Entity Recognition: https://arxiv.org/abs/1812.09449

[11]More Data, More Relations, More Context and More Openness: A Review and Outlook for Relation Extraction: https://arxiv.org/abs/2004.03186

[12]Deep Learning for Sentiment Analysis : A Survey: https://arxiv.org/abs/1801.07883

[13]Deep Learning for Aspect-Level Sentiment Classification: Survey, Vision, and Challenges: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8726353

[14]Neural Network Models for Paraphrase Identification, Semantic Textual Similarity, Natural Language Inference, and Question Answering: https://www.aclweb.org/anthology/C18-1328/

[15]Neural Reading Comprehension And Beyond: https://stacks.stanford.edu/file/druid:gd576xb1833/thesis-augmented.pdf

[16]Neural Machine Reading Comprehension: Methods and Trends: https://arxiv.org/abs/1907.01118

[17]Neural Machine Translation: A Review: https://arxiv.org/abs/1912.02047

[18]A Survey of Domain Adaptation for Neural Machine Translation: https://www.aclweb.org/anthology/C18-1111.pdf

[19]Pre-trained Models for Natural Language Processing: A Survey: https://arxiv.org/abs/2003.08271

[20]An Attentive Survey of Attention Models: https://arxiv.org/pdf/1904.02874.pdf

[21]An Introductory Survey on Attention Mechanisms in NLP Problems: https://arxiv.org/abs/1811.05544

[22]Attention in Natural Language Processing: https://arxiv.org/abs/1902.02181

[23]A Primer in BERTology: What we know about how BERT works: https://arxiv.org/pdf/2002.12327.pdf

[24]Beyond Accuracy: Behavioral Testing of NLP Models with CheckList: https://arxiv.org/pdf/2005.04118.pdf

[25]Evaluation of Text Generation: A Survey: https://arxiv.org/pdf/2006.14799.pdf

[26]Recommender systems survey: http://irntez.ir/wp-content/uploads/2016/12/sciencedirec.pdf

[27]Deep Learning based Recommender System: A Survey and New Perspectives: https://arxiv.org/pdf/1707.07435.pdf

[28]Are We Really Making Progress? A Worrying Analysis of Neural Recommendation Approaches: https://arxiv.org/pdf/1907.06902.pdf

[29]A Survey of Serendipity in Recommender Systems: https://www.researchgate.net/publication/306075233_A_Survey_of_Serendipity_in_Recommender_Systems

[30]Diversity in Recommender Systems – A survey: https://papers-gamma.link/static/memory/pdfs/153-Kunaver_Diversity_in_Recommender_Systems_2017.pdf

[31]A Survey of Explanations in Recommender Systems: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.418.9237&rep=rep1&type=pdf

[32]A State-of-the-Art Survey on Deep Learning Theory and Architectures: https://www.mdpi.com/2079-9292/8/3/292/htm

[33]Knowledge Distillation: A Survey: https://arxiv.org/pdf/2006.05525.pdf

[34]Compression of Deep Learning Models for Text: A Survey: https://arxiv.org/pdf/2008.05221.pdf

[35]A Survey on Deep Transfer Learning: https://arxiv.org/pdf/1808.01974.pdf

[36]A Comprehensive Survey of Neural Architecture Search-- Challenges and Solutions: https://arxiv.org/abs/2006.02903

[37]Neural Architecture Search: A Survey: https://arxiv.org/abs/1808.05377

[38] Object Detection in 20 Years: https://arxiv.org/pdf/1905.05055.pdf

[39]Threat of Adversarial Attacks on Deep Learning in Computer Vision: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8294186

[40]Computer Vision for Autonomous Vehicles: Problems, Datasets and State of the Art: https://arxiv.org/pdf/1704.05519.pdf

[41]A Brief Survey of Deep Reinforcement Learning: https://arxiv.org/pdf/1708.05866.pdf

[42]Transfer Learning for Reinforcement Learning Domains: http://www.jmlr.org/papers/volume10/taylor09a/taylor09a.pdf

[43]Review of Deep Reinforcement Learning Methods and Applications in Economics: https://arxiv.org/pdf/2004.01509.pdf

[44]A Comprehensive Survey of Graph Embedding: Problems, Techniques and Applications: https://arxiv.org/pdf/1709.07604

[45]From Word to Sense Embeddings:A Survey on Vector Representations of Meaning: https://www.jair.org/index.php/jair/article/view/11259/26454

[46]Diachronic Word Embeddings and Semantic Shifts: https://arxiv.org/pdf/1806.03537.pdf

[47]Word Embeddings: A Survey: https://arxiv.org/abs/1901.09069

[48]A Survey on Contextual Embeddings: https://arxiv.org/abs/2003.07278

[49]A Survey on Knowledge Graphs: Representation, Acquisition and Applications: https://arxiv.org/abs/2002.00388

[50]Meta-learning for Few-shot Natural Language Processing: A Survey: https://arxiv.org/abs/2007.09604

[51]Learning from Few Samples: A Survey: https://arxiv.org/abs/2007.15484

[52]Meta-Learning in Neural Networks: A Survey: https://arxiv.org/abs/2004.05439

[53]A Comprehensive Overview and Survey of Recent Advances in Meta-Learning: https://arxiv.org/abs/2004.11149

[54]Baby steps towards few-shot learning with multiple semantics: https://arxiv.org/abs/1906.01905

[55]Meta-Learning: A Survey: https://arxiv.org/abs/1810.03548

[56]A Perspective View And Survey Of Meta-learning: https://www.researchgate.net/publication/2375370_A_Perspective_View_And_Survey_Of_Meta-Learning

[57]A Survey on Transfer Learning: http://202.120.39.19:40222/wp-content/uploads/2018/03/A-Survey-on-Transfer-Learning.pdf

作者:kaiyuan,来源:NewBeeNLP

关于机器学习,参看1.机器学习之KNN分类算法介绍: Stata和R同步实现(附数据和代码),2.机器学习对经济学研究的影响研究进展综述,3.回顾与展望经济学研究中的机器学习,4.最新: 运用机器学习和合成控制法研究武汉封城对空气污染和健康的影响! 5.Top, 机器学习是一种应用的计量经济学方法, 不懂将来面临淘汰危险!6.Top前沿: 农业和应用经济学中的机器学习, 其与计量经济学的比较, 不读不懂你就out了!7.前沿: 机器学习在金融和能源经济领域的应用分类总结,8.机器学习方法出现在AER, JPE, QJE等顶刊上了!9.机器学习第一书, 数据挖掘, 推理和预测,10.从线性回归到机器学习, 一张图帮你文献综述 ,11.11种与机器学习相关的多元变量分析方法汇总,12.机器学习和大数据计量经济学, 你必须阅读一下这篇,13.机器学习与Econometrics的书籍推荐, 值得拥有的经典,14.机器学习在微观计量的应用最新趋势: 大数据和因果推断,15.R语言函数最全总结, 机器学习从这里出发,16.机器学习在微观计量的应用最新趋势: 回归模型,17.机器学习对计量经济学的影响, AEA年会独家报道,18.回归、分类与聚类:三大方向剖解机器学习算法的优缺点(附Python和R实现),19.关于机器学习的领悟与反思

20.机器学习,可异于数理统计,21. 前沿: 比特币, 多少罪恶假汝之手? 机器学习测算加密货币资助的非法活动金额! 22.利用机器学习进行实证资产定价, 金融投资的前沿科学技术! 23.全面比较和概述运用机器学习模型进行时间序列预测的方法优劣!24.用合成控制法, 机器学习和面板数据模型开展政策评估的论文!25.更精确的因果效应识别: 基于机器学习的视角,26.一本最新因果推断书籍, 包括了机器学习因果推断方法, 学习主流和前沿方法,27.如何用机器学习在中国股市赚钱呢? 顶刊文章告诉你方法!28.机器学习和经济学, 技术革命正在改变经济社会和学术研究,29.世界计量经济学院士新作“大数据和机器学习对计量建模与统计推断的挑战与机遇”,30.机器学习已经与政策评估方法, 例如事件研究法结合起来识别政策因果效应了!31.重磅! 汉森教授又修订了风靡世界的“计量经济学”教材, 为博士生们增加了DID, RDD, 机器学习等全新内容!32.几张有趣的图片, 各种类型的经济学, 机器学习, 科学论文像什么样子?33. 机器学习已经用于微观数据调查和构建指标了, 比较前沿!34.两诺奖得主谈计量经济学发展进化, 机器学习的影响, 如何合作推动新想法!35.前沿, 双重机器学习方法DML用于因果推断, 实现它的code是什么?

下面这些短链接文章属于合集,可以收藏起来阅读,不然以后都找不到了。

4年,计量经济圈近1000篇不重类计量文章,

可直接在公众号菜单栏搜索任何计量相关问题,

Econometrics Circle




数据系列空间矩阵 | 工企 数据 | PM2.5 | 市场化指数 | CO2数据 |  夜间灯光 官员方言  | 微观数据 | 内部数据
计量系列匹配方法 | 内生性 | 工具变量 | DID | 面板数据 | 常用TOOL  | 中介调节 | 时间序列 | RDD断点 | 合成控制 | 200篇合辑 | 因果识别 |  社会网络 | 空间DID
数据处理Stata | R | Python | 缺失值  | CHIP/ CHNS/CHARLS/CFPS/CGSS等 |
干货系列能源环境 | 效率研究 | 空间计量 | 国际经贸 |  计量软件 | 商科研究 | 机器学习 | SSCI | CSSCI | SSCI查询 |  名家经验
计量经济圈组织了一个计量社群,有如下特征:热情互助最多前沿趋势最多、社科资料最多、社科数据最多、科研牛人最多、海外名校最多。因此,建议积极进取和有强烈研习激情的中青年学者到社群交流探讨,始终坚信优秀是通过感染优秀而互相成就彼此的。


Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/150514
 
294 次点击