社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  机器学习算法

《用对抗样本防御基于深度学习的视频指纹攻击》美海军研究生院2022最新60页论文

专知人工智能 • 2 年前 • 174 次点击  

在一个日益数字化的世界里,在线匿名和隐私是互联网用户的一个首要问题。像The Onion Router(Tor)这样的工具为用户提供了匿名的互联网浏览。然而,最近,Tor的匿名性因指纹识别而受到影响,机器学习模型被用来分析Tor流量并预测用户的浏览习惯,有些模型的准确率超过99%。Tor有一些试图防止指纹识别的防御措施,但许多都被利用深度神经网络(DNN)的新技术所击败。对DNN强大的新防御措施使用对抗样本来欺骗分类器,但这些防御措施要么是假设用户可以事先获得完整的流量跟踪,要么需要Tor服务器的昂贵维护。在这篇论文中,我们提出了Prism,这是一种针对指纹攻击的防御措施,使用对抗样本来实时愚弄分类器。我们描述了一种生成对抗样本的新方法,该方法能够在随着时间的推移学习输入时创建对抗样本。Prism将这些对抗样本注入Tor流量流中,以防止DNN准确预测用户正在浏览的网站,即使DNN通过对抗性训练进行了加固。我们表明,Prism将防御性指纹模型的准确性从98%以上降低到0%。我们还表明,Prism可以完全在服务器端实现,提高了在没有GPU的设备上运行Tor的用户的部署能力。

专知便捷查看

便捷下载,请关注专知人工智能公众号(点击上方蓝色专知关注)

  • 后台回复“PRISM” 就可以获取《《用对抗样本防御基于深度学习的视频指纹攻击》美海军研究生院2022最新60页论文》专知下载链接


  • 欢迎微信扫一扫加专知助手,咨询使用专知,获取最新AI专业干货知识教程资料!


专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取70000+AI(AI与军事、医药、公安等)主题干货知识资料!

点击“阅读原文”,了解使用专知,查看获取70000+AI主题知识资料
Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/148012
 
174 次点击