社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  机器学习算法

面板数据政策评估方法(DID等)的最新进展与相关应用, 包括机器学习和因子估计法

计量经济圈 • 2 年前 • 560 次点击  

凡是搞计量经济的,都关注这个号了

稿件:econometrics666@126.com

所有计量经济圈方法论丛的code程序 , 宏微观数据库和各种软件都放在社群里.欢迎到计量经济圈社群交流访问.

今天,分享一篇计量社群群友最新关于面板数据模型的政策评估研究方法及相关应用的综述性文章,里面系统回了DID、SCM、Panel data approach、Factor estimation methods和Machine learning方法的最新进展和实证应用。
摘要研究目标:介绍大数据背景下基于面板数据模型的政策评估方法的最新进展与相关应用。研究方法:回顾双重差分法、合成控制法、面板数据方法、因子估计方法和机器学习方法这几类方法在估计面板数据因果效应方面的最新进展后,介绍现有研究中基于上述估计量的推断方法,最后报告已有文献对于不同方法的对比,并提供实证应用建议。研究发现:当实证应用问题中随时间变化的因子个数超过一个时,特别要关注基于双向固定效应的双重差分法的适用性。运用双向固定效应设定模型不恰当时,可考虑使用基于交互固定效应模型的因子模型类估计和推断方法。研究创新:从大数据时代的政策评估需求出发,梳理基于面板数据的因果效应估计和推断方法并给出应用建议。研究价值:为实证研究者提供了选择政策评估方法的参考指南。

Source: 沈艳,李星宇,周前坤.大数据背景下面板数据政策评估的估计和推断[J].数量经济技术经济研究,2022,39(06):120-139.

*注:PC版微信的阅读体验可能更好,文后附上了原文PDF。


长按以上小程序即可下载原文PDF

关于DID,参看:1.120篇DID双重差分方法的文章合集, 包括代码,程序及解读, 建议收藏!2.诚实双重差分法DID, 面板事件研究法和Bacon分解的经典应用文!3. 前沿: 多期或渐进或交叠DID, 如何进行平行趋势检验呢?4.多期DID或渐进DID或交叠DID, 最新Stata执行命令整理如下供大家学习,5.DID前沿: 5种方法估计事件研究的因果效应, 并使用绘制系数和置信区间, 详细代码和数据,6.事件研究法开展政策评估和因果识别, 分享8篇提供数据和代码的文章,7.推荐用渐进(多期)DID和事件研究法开展政策评估的论文及其实现数据和代码!8.机器学习已经与政策评估方法, 例如事件研究法结合起来识别政策因果效应了!9.多期DID前沿方法大讨论, e.g., 进入-退出型DID, 异质性和动态性处理效应DID, 基期选择问题等

以下这些短链接文章属于合集,可以收藏起来阅读,不然以后都找不到了。

3.5年,计量经济圈近1000篇不重类计量文章,

可直接在公众号菜单栏搜索任何计量相关问题,

Econometrics Circle




数据系列空间矩阵 | 工企数据 | PM2.5 | 市场化指数 | CO2数据  |  夜间灯光 官员方言  | 微观数据 | 内部数据
计量系列匹配方法 |  内生性 | 工具变量 | DID | 面板数据 | 常用TOOL | 中介调节 |  时间序列 | RDD断点 | 合成控制 | 200篇合辑 | 因果识别 |  社会网络 | 空间DID
数据处理Stata | R | Python | 缺失值  | CHIP/ CHNS/CHARLS/CFPS/CGSS等 |
干货系列能源环境 | 效率研究 | 空间计量 | 国际经贸  | 计量软件 | 商科研究 | 机器学习 | SSCI | CSSCI |  SSCI查询 | 名家经验
计量经济圈组织了一个计量社群,有如下特征:热情互助最多前沿趋势最多、社科资料最多、社科数据最多、科研牛人最多、海外名校最多。因此,建议积极进取和有强烈研习激情的中青年学者到社群交流探讨,始终坚信优秀是通过感染优秀而互相成就彼此的。


Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/136301
 
560 次点击