社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  机器学习算法

深度学习推荐系统、CTR预估工业界实战论文整理分享

深度学习与NLP • 3 年前 • 351 次点击  



    本资源整理了深度学习在推荐系统、广告系统中应用的一些经典论文,涉及推荐系统中召回、排序、CTR预估、Embedding化、系统多样性、多目标,排序和混排的EE和RL等部分。

    资源整理自网络,源链接:https://github.com/imsheridan/DeepRec


目录

    点击率预估

    召回层

    排序层

    向量化

    多任务学习

    多样性

    探索/应用(EE)

    强化学习

    序列模型推荐

    用户模型

    BERT推荐模型

    图模型推荐(浅层/深层图模型)


点击率预估

    •[FiBiNET][RecSys 19][Weibo] FiBiNET_Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction

    •[DSIN][IJCAI 19][Alibaba] Deep Session Interest Network for Click-Through Rate Prediction

    •[FGCNN][WWW 19][Huawei] Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction

    •[AutoInt][CIKM 19] AutoInt_Automatic Feature Interaction Learning via Self-Attentive Neural Networks

    •[DIEN][AAAI 19][Alibaba] Deep Interest Evolution Network for Click-Through Rate Prediction

    •[PNN][TOIS 18] Product-based Neural Networks for User Response Prediction

    •[xDeepFM][KDD 18][Microsoft] xDeepFM_Combining Explicit and Implicit Feature Interactions for Recommender Systems

    •[DCN][KDD 17][Google] Deep & Cross Network for Ad Click Predictions

    •[DIN][KDD 18][Alibaba] Deep Interest Network for Click-Through Rate Prediction

    •[FNN][ECIR 16] Deep Learning over Multi-field Categorical Data_A Case Study on User Response Prediction

    •[AFM][IJCAI 17] Attentional Factorization Machines - Learning the Weight of Feature Interactions via Attention Networks

    •[DeepFM][IJCAI 17][Huawei] DeepFM_A Factorization-Machine based Neural Network for CTR Prediction

    •[NFM][SIGIR 17] Neural Factorization Machines for Sparse Predictive Analytics

    •[WDL][DLRS 16][Google] Wide & Deep Learning for Recommender Systems

    

召回层

    •[JTM][NIPS 19] Joint Optimization of Tree-based Index and Deep Model for Recommender Systems

    •[MIND][arxiv 19][Alibaba] Multi-Interest Network with Dynamic Routing for Recommendation at Tmall

    •[SDM][CIKM 19][Alibaba] Sequential Deep Matching Model for Online Large-scale Recommender System

    •[TDM][KDD 18][Alibaba] Learning Tree-based Deep Model for Recommender Systems

    •[NCF][WWW 17] Neural Collaborative Filtering

    •[YoutubeDNN][RecSys 16][Google] Deep Neural Networks for YouTube Recommendations

    •[DSSM][CIKM 13][Microsoft] Learning Deep Structured Semantic Models for Web Search using Clickthrough Data

    

排序层

    •[PRM][RecSys 19][Alibaba] Personalized Re-ranking for Recommendation

    •[BERT4Rec][CIKM 19][Alibaba] BERT4Rec_Sequential Recommendation with Bidirectional Encoder Representations from Transformer

    •[BST][DLP-KDD 19][Alibaba] Behavior Sequence Transformer for E-commerce Recommendation in Alibaba

    

向量化

    •[Airbnb Embedding][KDD 18][Airbnb] Real-time Personalization using Embeddings for Search Ranking at Airbnb

    •[Alibaba Embedding][KDD 18][Alibaba] Billion-scale Commodity Embedding for E-commerce Recommendation in Alibaba

    •[DeepWalk][KDD 14] DeepWalk- Online Learning of Social Representations

    •[LINE][WWW 15][Microsoft] LINE_Large-scale Information Network Embedding

    •[Node2vec][KDD 16] Node2vec_Scalable Feature Learning for Networks

    •[SDNE][KDD 16] Structural Deep Network Embedding

    •[Struc2Vec][KDD 17]struc2vec_Learning Node Representations from Structural Identity

    •[GraphSAGE][NIPS 17] Inductive Representation Learning on Large Graphs

    •[GCN][ICLR 17] Semi-supervised Classification with Graph Convolutional Networks

    

多任务学习

    •[RecSys 19][Alibaba] A Pareto-Efficient Algorithm for Multiple Objective Optimization in E-Commerce Recommendation

    •[MMoE][KDD 18][Google] Modeling Task Relationships in Multi-task Learning with Multi-gate Mixture-of-Experts

    •[ESMM][SIGIR 18][Alibaba] Entire Space Multi-Task Model_An Effective Approach for Estimating Post-Click Conversion Rate

    

多样性

    •[CIKM 18][Google] Practical Diversified Recommendations on YouTube with Determinantal Point Processes

    •[NeurIPS 18][Hulu] Fast Greedy MAP Inference for Determinantal Point Process to Improve Recommendation Diversity

    

探索/应用(EE)

    •[LinUCB][WWW 10][Yahoo] A Contextual-Bandit Approach to Personalized News Article Recommendation

    

强化学习

    •[IJCAI 19][Google] Reinforcement Learning for Slate-based Recommender Systems_A Tractable Decomposition and Practical Methodology

    •[WSDM 19][Google] Top-K Off-Policy Correction for a REINFORCE Recommender System

    •[DRN][WWW 18][Microsoft] DRN_A Deep Reinforcement Learning Framework for News Recommendation

    

序列模型推荐

    •[IJCAI 19] Sequential Recommender Systems_Challenges, Progress and Prospects

    

用户模型

    •[KDD 19][Tencent] A User-Centered Concept Mining System for Query and Document Understanding at Tencent

    

BERT推荐模型

    •[ALBERT][arxiv 19][Google] ALBERT_A Lite BERT for Self-supervised Learning of Language Representations

    •[BERT][arxiv 19][Google ]BERT_Pre-training of Deep Bidirectional Transformers for Language Understanding

    •[ERNIE][arxiv 19][Baidu] ERNIE_Enhanced Representation through Knowledge Integration

    •[T5][arxiv 19][Google] Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer

    •[XLNet][arxiv 19][Google] XLNet_Generalized Autoregressive Pretraining for Language Understanding

    

图模型推荐

    浅层图向量化模型

    •[DeepWak][KDD 14] DeepWalk_Online Learning of Social Representations

    •[GraRep][CIKM 15] GraRep_Learning Graph Representations with Global Structural Information

    •[HOPE][KDD 16] Asymmetric Transitivity Preserving Graph Embedding

    •[LINE][WWW 15][Microsoft] LINE_Large-scale Information Network Embedding

    •[NetMF][WSDM 18] Network Embedding as Matrix Factorization_Unifying DeepWalk, LINE, PTE, and node2vec

    •[NetSMF][WWW 19] NetSMF_Large-Scale Network Embedding as Sparse Matrix

    •[Node2Vec][KDD 16] Node2Vec_Scalable Feature Learning for Networks

    •[ProNE][IJCAI 19] ProNE_Fast and Scalable Network Representation Learning

    •[SDNE][KDD 16] Structural Deep Network Embedding

    •[Struc2Vec][KDD 17] Struc2Vec_Learning Node Representations from Structural Identity

    

    图神经网络模型

    •[FastGCN][ICLR 18] FastGCN_Fast Learning with Graph Convolutional Networks via Importance Sampling

    •[GAT][ICLR 18] Graph Attention Networks

    •[GCN][ICLR 17] Semi-Supervised Classification with Graph Convolutional Networks

    •[GraphSAGE][NIPS 17] Inductive Representation Learning on Large Graphs




扫描下方二维码可以订阅哦!

DeepLearning_NLP


深度学习与NLP



       商务合作请联系微信号:lqfarmerlq

Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/126135
 
351 次点击