社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  DATABASE

面试题:工作中怎么做 MySQL 优化?

程序员鱼皮 • 3 年前 • 428 次点击  

前言

面试题来自:社招一年半面经分享(含阿里美团头条京东滴滴)

MySQL常见的优化手段分为下面几个方面:

SQL优化、设计优化,硬件优化等,其中每个大的方向中又包含多个小的优化点


下面我们具体来看看~

SQL优化

此优化方案指的是通过优化 SQL 语句以及索引来提高 MySQL 数据库的运行效率,具体内容如下:

分页优化

例如:

select * from table where type = 2 and level = 9 order by id asc limit 190289,10;

优化方案:

  • 延迟关联

    先通过where条件提取出主键,在将该表与原数据表关联,通过主键id提取数据行,而不是通过原来的二级索引提取数据行

    例如:

select a.* from table a, (select id from table where type = 2 and level = 9 order by id asc limit 190289,10 ) b where a.id = b.id
  • 书签方式

    书签方式说白了就是找到limit第一个参数对应的主键值,再根据这个主键值再去过滤并limit

    例如:

select * from table where id > (select * from table where type = 2 and level = 9 order by id asc limit 1902891limit 10;

索引优化

正确使用索引

假如我们没有添加索引,那么在查询时就会触发全表扫描,因此查询的数据就会很多,并且查询效率会很低,为了提高查询的性能,我们就需要给最常使用的查询字段上,添加相应的索引,这样才能提高查询的性能

建立覆盖索引

InnoDB使用辅助索引查询数据时会回表,但是如果索引的叶节点中已经包含要查询的字段,那它没有必要再回表查询了,这就叫覆盖索引

例如对于如下查询:

select name from test where city='上海'

我们将被查询的字段建立到联合索引中,这样查询结果就可以直接从索引中获取

alter table test add index idx_city_name (city, name);

在 MySQL 5.0 之前的版本尽量避免使用or查询

在 MySQL 5.0 之前的版本要尽量避免使用 or 查询,可以使用 union 或者子查询来替代,因为早期的 MySQL 版本使用 or 查询可能会导致索引失效,在 MySQL 5.0 之后的版本中引入了索引合并

索引合并简单来说就是把多条件查询,比如or或and查询对多个索引分别进行条件扫描,然后将它们各自的结果进行合并,因此就不会导致索引失效的问题了

如果从Explain执行计划的type列的值是index_merge可以看出MySQL使用索引合并的方式来执行对表的查询

关于Explain的使用可以参考我之前的文章:最完整的Explain总结,SQL优化不再困难

避免在 where 查询条件中使用 != 或者 <> 操作符

SQL中,不等于操作符会导致查询引擎放弃索引索引,引起全表扫描,即使比较的字段上有索引

解决方法:通过把不等于操作符改成or,可以使用索引,避免全表扫描

例如,把column<>’aaa’,改成column>’aaa’ or column,就可以使用索引了

适当使用前缀索引

MySQL 是支持前缀索引的,也就是说我们可以定义字符串的一部分来作为索引

我们知道索引越长占用的磁盘空间就越大,那么在相同数据页中能放下的索引值也就越少,这就意味着搜索索引需要的查询时间也就越长,进而查询的效率就会降低,所以我们可以适当的选择使用前缀索引,以减少空间的占用和提高查询效率

比如,邮箱的后缀都是固定的“@xxx.com”,那么类似这种后面几位为固定值的字段就非常适合定义为前缀索引

alter table test add index index2(email(6));

使用前缀索引,定义好长度,就可以做到既节省空间,又不用额外增加太多的查询成本

需要注意的是,前缀索引也存在缺点,MySQL无法利用前缀索引做order by和group by 操作,也无法作为覆盖索引

查询具体的字段而非全部字段

要尽量避免使用select *,而是查询需要的字段,这样可以提升速度,以及减少网络传输的带宽压力

优化子查询

尽量使用 Join 语句来替代子查询,因为子查询是嵌套查询,而嵌套查询会新创建一张临时表,而临时表的创建与销毁会占用一定的系统资源以及花费一定的时间,同时对于返回结果集比较大的子查询,其对查询性能的影响更大

关于Join语句使用,可以参考我之前的文章:写出好的Join语句,前提你得懂这些

小表驱动大表

我们要尽量使用小表驱动大表的方式进行查询,也就是如果 B 表的数据小于 A 表的数据,那执行的顺序就是先查 B 表再查 A 表,具体查询语句如下:

select name from A where id in (select id from B);

不要在列上进行运算操作

不要在列字段上进行算术运算或其他表达式运算,否则可能会导致查询引擎无法正确使用索引,从而影响了查询的效率

select * from test where id + 1 = 50;
select * from test where month(updateTime) = 7;

一个很容易踩的坑:隐式类型转换:

select * from test where skuId=123456

skuId这个字段上有索引,但是explain的结果却显示这条语句会全表扫描

原因在于skuId的字符类型是varchar(32),比较值却是整型,故需要做类型转换

适当增加冗余字段

增加冗余字段可以减少大量的连表查询,因为多张表的连表查询性能很低,所有可以适当的增加冗余字段,以减少多张表的关联查询,这是以空间换时间的优化策略

正确使用联合索引

使用了 B+ 树的 MySQL 数据库引擎,比如 InnoDB 引擎,在每次查询复合字段时是从左往右匹配数据的,因此在创建联合索引的时候需要注意索引创建的顺序

例如,我们创建了一个联合索引是idx(name,age,sex),那么当我们使用,姓名+年龄+性别、姓名+年龄、姓名等这种最左前缀查询条件时,就会触发联合索引进行查询;然而如果非最左匹配的查询条件,例如,性别+姓名这种查询条件就不会触发联合索引

Join优化

MySQL的join语句连接表使用的是nested-loop join算法,这个过程类似于嵌套循环,简单来说,就是遍历驱动表(外层表),每读出一行数据,取出连接字段到被驱动表(内层表)里查找满足条件的行,组成结果行

要提升join语句的性能,就要尽可能减少嵌套循环的循环次数

一个显著优化方式是对被驱动表的join字段建立索引,利用索引能快速匹配到对应的行,避免与内层表每一行记录做比较,极大地减少总循环次数。另一个优化点,就是连接时用小结果集驱动大结果集,在索引优化的基础上能进一步减少嵌套循环的次数

如果难以判断哪个是大表,哪个是小表,可以用inner join连接,MySQL会自动选择小表去驱动大表

关于Join语句使用,可以参考我之前的文章:写出好的Join语句,前提你得懂这些

避免使用JOIN关联太多的表

对于 MySQL 来说,是存在关联缓存的,缓存的大小可以由join_buffer_size参数进行设置

在 MySQL 中,对于同一个 SQL 多关联(join)一个表,就会多分配一个关联缓存,如果在一个 SQL 中关联的表越多,所占用的内存也就越大

如果程序中大量的使用了多表关联的操作,同时join_buffer_size设置的也不合理的情况下,就容易造成服务器内存溢出的情况,就会影响到服务器数据库性能的稳定性

排序优化

利用索引扫描做排序

MySQL有两种方式生成有序结果:其一是对结果集进行排序的操作,其二是按照索引顺序扫描得出的结果自然是有序的

但是如果索引不能覆盖查询所需列,就不得不每扫描一条记录回表查询一次,这个读操作是随机IO,通常会比顺序全表扫描还慢

因此,在设计索引时,尽可能使用同一个索引既满足排序又用于查找行

例如:




    
--建立索引(date,staff_id,customer_id)
select staff_id, customer_id from test where date = '2010-01-01' order by staff_id,customer_id;

只有当索引的列顺序和ORDER BY子句的顺序完全一致,并且所有列的排序方向都一样时,才能够使用索引来对结果做排序

UNION优化

MySQL处理union的策略是先创建临时表,然后将各个查询结果填充到临时表中最后再来做查询,很多优化策略在union查询中都会失效,因为它无法利用索引

最好手工将where、limit等子句下推到union的各个子查询中,以便优化器可以充分利用这些条件进行优化

此外,除非确实需要服务器去重,一定要使用union all,如果不加all关键字,MySQL会给临时表加上distinct选项,这会导致对整个临时表做唯一性检查,代价很高

慢查询日志

出现慢查询通常的排查手段是先使用慢查询日志功能,查询出比较慢的 SQL 语句,然后再通过 Explain 来查询 SQL 语句的执行计划,最后分析并定位出问题的根源,再进行处理

慢查询日志指的是在 MySQL 中可以通过配置来开启慢查询日志的记录功能,超过long_query_time值的 SQL 将会被记录在日志中

我们可以通过设置“slow_query_log=1”来开启慢查询

需要注意的是,在开启慢日志功能之后,会对 MySQL 的性能造成一定的影响,因此在生产环境中要慎用此功能

设计优化

尽量避免使用NULL

NULL在MySQL中不好处理,存储需要额外空间,运算也需要特殊的运算符,含有NULL的列很难进行查询优化

应当指定列为not null,用0、空串或其他特殊的值代替空值,比如定义为int not null default 0

最小数据长度

越小的数据类型长度通常在磁盘、内存和CPU缓存中都需要更少的空间,处理起来更快

使用最简单数据类型

简单的数据类型操作代价更低,比如:能使用 int 类型就不要使用 varchar 类型,因为 int 类型比 varchar 类型的查询效率更高

尽量少定义 text 类型

text 类型的查询效率很低,如果必须要使用 text 定义字段,可以把此字段分离成子表,需要查询此字段时使用联合查询,这样可以提高主表的查询效率

适当分表、分库策略

分表是指当一张表中的字段更多时,可以尝试将一张大表拆分为多张子表,把使用比较高频的主信息放入主表中,其他的放入子表,这样我们大部分查询只需要查询字段更少的主表就可以完成了,从而有效的提高了查询的效率

分库是指将一个数据库分为多个数据库。比如我们把一个数据库拆分为了多个数据库,一个主数据库用于写入和修改数据,其他的用于同步主数据并提供给客户端查询,这样就把一个库的读和写的压力,分摊给了多个库,从而提高了数据库整体的运行效率

常见类型选择

整数类型宽度设置

MySQL可以为整数类型指定宽度,例如int(11),实际上并没有意义,它并不会限制值的范围,对于存储和计算来说,int(1)和int(20)是相同的

VARCHAR和CHAR类型

char类型是定长的,而varchar存储可变字符串,比定长更省空间,但是varchar需要额外1或2个字节记录字符串长度,更新时也容易产生碎片

需要结合使用场景来选择:如果字符串列最大长度比平均长度大很多,或者列的更新很少,选择varchar较合适;如果要存很短的字符串,或者字符串值长度都相同,比如MD5值,或者列数据经常变更,选择使用char类型

DATETIME和TIMESTAMP类型

datetime的范围更大,能表示从1001到9999年,timestamp只能表示从1970年到2038年。datetime与时区无关,timestamp显示值依赖于时区。在大多数场景下,这两种类型都能良好地工作,但是建议使用timestamp,因为datetime占用8个字节,timestamp只占用了4个字节,timestamp空间效率更高

BLOB和TEXT类型

blob和text都是为存储很大数据而设计的字符串数据类型,分别采用二进制和字符方式存储

在实际使用中,要慎用这两种类型,它们的查询效率很低,如果字段必须要使用这两种类型,可以把此字段分离成子表,需要查询此字段时使用联合查询,这样可以提高主表的查询效率

范式化

当数据较好范式化时,修改的数据更少,而且范式化的表通常要小,可以有更多的数据缓存在内存中,所以执行操作会更快

缺点则是查询时需要更多的关联

第一范式:字段不可分割,数据库默认支持

第二范式:消除对主键的部分依赖,可以在表中加上一个与业务逻辑无关的字段作为主键,比如用自增id

第三范式:消除对主键的传递依赖,可以将表拆分,减少数据冗余

硬件优化

MySQL 对硬件的要求主要体现在三个方面:磁盘、网络和内存

磁盘

磁盘应该尽量使用有高性能读写能力的磁盘,比如固态硬盘,这样就可以减少 I/O 运行的时间,从而提高了 MySQL 整体的运行效率

磁盘也可以尽量使用多个小磁盘而不是一个大磁盘,因为磁盘的转速是固定的,有多个小磁盘就相当于拥有多个并行运行的磁盘一样

网络

保证网络带宽的通畅(低延迟)以及够大的网络带宽是 MySQL 正常运行的基本条件,如果条件允许的话也可以设置多个网卡,以提高网络高峰期 MySQL 服务器的运行效率

内存

MySQL 服务器的内存越大,那么存储和缓存的信息也就越多,而内存的性能是非常高的,从而提高了整个 MySQL 的运行效率

最后

觉得有收获,希望帮忙点赞,转发下哈,谢谢,谢谢~

参考资料:

  • 《高性能MySQL》

  • 《MySQL技术内幕:InnodDB存储引擎》

Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/116012
 
428 次点击