前言
面试题来自:社招一年半面经分享(含阿里美团头条京东滴滴)
MySQL常见的优化手段分为下面几个方面:
SQL优化、设计优化,硬件优化等,其中每个大的方向中又包含多个小的优化点
下面我们具体来看看~
SQL优化
此优化方案指的是通过优化 SQL 语句以及索引来提高 MySQL 数据库的运行效率,具体内容如下:
分页优化
例如:
select * from table where type = 2 and level = 9 order by id asc limit 190289,10;
优化方案:
延迟关联
先通过where条件提取出主键,在将该表与原数据表关联,通过主键id提取数据行,而不是通过原来的二级索引提取数据行
例如:
select a.* from table a, (select id from table where type = 2 and level = 9 order by id asc limit 190289,10 ) b where a.id = b.id
书签方式
书签方式说白了就是找到limit第一个参数对应的主键值,再根据这个主键值再去过滤并limit
例如:
select * from table where id > (select * from table where type = 2 and level = 9 order by id asc limit 190289, 1) limit 10;
索引优化
正确使用索引
假如我们没有添加索引,那么在查询时就会触发全表扫描,因此查询的数据就会很多,并且查询效率会很低,为了提高查询的性能,我们就需要给最常使用的查询字段上,添加相应的索引,这样才能提高查询的性能
建立覆盖索引
InnoDB使用辅助索引查询数据时会回表,但是如果索引的叶节点中已经包含要查询的字段,那它没有必要再回表查询了,这就叫覆盖索引
例如对于如下查询:
select name from test where city='上海'
我们将被查询的字段建立到联合索引中,这样查询结果就可以直接从索引中获取
alter table test add index idx_city_name (city, name);
在 MySQL 5.0 之前的版本尽量避免使用or查询
在 MySQL 5.0 之前的版本要尽量避免使用 or 查询,可以使用 union 或者子查询来替代,因为早期的 MySQL 版本使用 or 查询可能会导致索引失效,在 MySQL 5.0 之后的版本中引入了索引合并
索引合并简单来说就是把多条件查询,比如or或and查询对多个索引分别进行条件扫描,然后将它们各自的结果进行合并,因此就不会导致索引失效的问题了
如果从Explain执行计划的type列的值是index_merge
可以看出MySQL使用索引合并的方式来执行对表的查询
关于Explain的使用可以参考我之前的文章:最完整的Explain总结,SQL优化不再困难
避免在 where 查询条件中使用 != 或者 <> 操作符
SQL中,不等于操作符会导致查询引擎放弃索引索引,引起全表扫描,即使比较的字段上有索引
解决方法:通过把不等于操作符改成or,可以使用索引,避免全表扫描
例如,把column<>’aaa’,改成column>’aaa’ or column,就可以使用索引了
适当使用前缀索引
MySQL 是支持前缀索引的,也就是说我们可以定义字符串的一部分来作为索引
我们知道索引越长占用的磁盘空间就越大,那么在相同数据页中能放下的索引值也就越少,这就意味着搜索索引需要的查询时间也就越长,进而查询的效率就会降低,所以我们可以适当的选择使用前缀索引,以减少空间的占用和提高查询效率
比如,邮箱的后缀都是固定的“@xxx.com
”,那么类似这种后面几位为固定值的字段就非常适合定义为前缀索引
alter table test add index index2(email(6));
使用前缀索引,定义好长度,就可以做到既节省空间,又不用额外增加太多的查询成本
需要注意的是,前缀索引也存在缺点,MySQL无法利用前缀索引做order by和group by 操作,也无法作为覆盖索引
查询具体的字段而非全部字段
要尽量避免使用select *
,而是查询需要的字段,这样可以提升速度,以及减少网络传输的带宽压力
优化子查询
尽量使用 Join 语句来替代子查询,因为子查询是嵌套查询,而嵌套查询会新创建一张临时表,而临时表的创建与销毁会占用一定的系统资源以及花费一定的时间,同时对于返回结果集比较大的子查询,其对查询性能的影响更大
关于Join语句使用,可以参考我之前的文章:写出好的Join语句,前提你得懂这些
小表驱动大表
我们要尽量使用小表驱动大表的方式进行查询,也就是如果 B 表的数据小于 A 表的数据,那执行的顺序就是先查 B 表再查 A 表,具体查询语句如下:
select name from A where id in (select id from B);
不要在列上进行运算操作
不要在列字段上进行算术运算或其他表达式运算,否则可能会导致查询引擎无法正确使用索引,从而影响了查询的效率
select * from test where id + 1 = 50;
select * from test where month(updateTime) = 7;
一个很容易踩的坑:隐式类型转换:
select * from test where skuId=123456
skuId这个字段上有索引,但是explain的结果却显示这条语句会全表扫描
原因在于skuId的字符类型是varchar(32),比较值却是整型,故需要做类型转换
适当增加冗余字段
增加冗余字段可以减少大量的连表查询,因为多张表的连表查询性能很低,所有可以适当的增加冗余字段,以减少多张表的关联查询,这是以空间换时间的优化策略
正确使用联合索引
使用了 B+ 树的 MySQL 数据库引擎,比如 InnoDB 引擎,在每次查询复合字段时是从左往右匹配数据的,因此在创建联合索引的时候需要注意索引创建的顺序
例如,我们创建了一个联合索引是idx(name,age,sex)
,那么当我们使用,姓名+年龄+性别、姓名+年龄、姓名等这种最左前缀查询条件时,就会触发联合索引进行查询;然而如果非最左匹配的查询条件,例如,性别+姓名这种查询条件就不会触发联合索引
Join优化
MySQL的join语句连接表使用的是nested-loop join算法,这个过程类似于嵌套循环,简单来说,就是遍历驱动表(外层表),每读出一行数据,取出连接字段到被驱动表(内层表)里查找满足条件的行,组成结果行
要提升join语句的性能,就要尽可能减少嵌套循环的循环次数
一个显著优化方式是对被驱动表的join字段建立索引,利用索引能快速匹配到对应的行,避免与内层表每一行记录做比较,极大地减少总循环次数。另一个优化点,就是连接时用小结果集驱动大结果集,在索引优化的基础上能进一步减少嵌套循环的次数
如果难以判断哪个是大表,哪个是小表,可以用inner join连接,MySQL会自动选择小表去驱动大表
关于Join语句使用,可以参考我之前的文章:写出好的Join语句,前提你得懂这些
避免使用JOIN关联太多的表
对于 MySQL 来说,是存在关联缓存的,缓存的大小可以由join_buffer_size
参数进行设置
在 MySQL 中,对于同一个 SQL 多关联(join)一个表,就会多分配一个关联缓存,如果在一个 SQL 中关联的表越多,所占用的内存也就越大
如果程序中大量的使用了多表关联的操作,同时join_buffer_size
设置的也不合理的情况下,就容易造成服务器内存溢出的情况,就会影响到服务器数据库性能的稳定性
排序优化
利用索引扫描做排序
MySQL有两种方式生成有序结果:其一是对结果集进行排序的操作,其二是按照索引顺序扫描得出的结果自然是有序的
但是如果索引不能覆盖查询所需列,就不得不每扫描一条记录回表查询一次,这个读操作是随机IO,通常会比顺序全表扫描还慢
因此,在设计索引时,尽可能使用同一个索引既满足排序又用于查找行
例如:
--建立索引(date,staff_id,customer_id)
select staff_id, customer_id from test where date = '2010-01-01' order by staff_id,customer_id;
只有当索引的列顺序和ORDER BY子句的顺序完全一致,并且所有列的排序方向都一样时,才能够使用索引来对结果做排序
UNION优化
MySQL处理union的策略是先创建临时表,然后将各个查询结果填充到临时表中最后再来做查询,很多优化策略在union查询中都会失效,因为它无法利用索引
最好手工将where、limit等子句下推到union的各个子查询中,以便优化器可以充分利用这些条件进行优化
此外,除非确实需要服务器去重,一定要使用union all,如果不加all关键字,MySQL会给临时表加上distinct选项,这会导致对整个临时表做唯一性检查,代价很高
慢查询日志
出现慢查询通常的排查手段是先使用慢查询日志功能,查询出比较慢的 SQL 语句,然后再通过 Explain 来查询 SQL 语句的执行计划,最后分析并定位出问题的根源,再进行处理
慢查询日志指的是在 MySQL 中可以通过配置来开启慢查询日志的记录功能,超过long_query_time
值的 SQL 将会被记录在日志中
我们可以通过设置“slow_query_log=1”
来开启慢查询
需要注意的是,在开启慢日志功能之后,会对 MySQL 的性能造成一定的影响,因此在生产环境中要慎用此功能
设计优化
尽量避免使用NULL
NULL在MySQL中不好处理,存储需要额外空间,运算也需要特殊的运算符,含有NULL的列很难进行查询优化
应当指定列为not null,用0、空串或其他特殊的值代替空值,比如定义为int not null default 0
最小数据长度
越小的数据类型长度通常在磁盘、内存和CPU缓存中都需要更少的空间,处理起来更快
使用最简单数据类型
简单的数据类型操作代价更低,比如:能使用 int 类型就不要使用 varchar 类型,因为 int 类型比 varchar 类型的查询效率更高
尽量少定义 text 类型
text 类型的查询效率很低,如果必须要使用 text 定义字段,可以把此字段分离成子表,需要查询此字段时使用联合查询,这样可以提高主表的查询效率
适当分表、分库策略
分表是指当一张表中的字段更多时,可以尝试将一张大表拆分为多张子表,把使用比较高频的主信息放入主表中,其他的放入子表,这样我们大部分查询只需要查询字段更少的主表就可以完成了,从而有效的提高了查询的效率
分库是指将一个数据库分为多个数据库。比如我们把一个数据库拆分为了多个数据库,一个主数据库用于写入和修改数据,其他的用于同步主数据并提供给客户端查询,这样就把一个库的读和写的压力,分摊给了多个库,从而提高了数据库整体的运行效率
常见类型选择
整数类型宽度设置
MySQL可以为整数类型指定宽度,例如int(11),实际上并没有意义,它并不会限制值的范围,对于存储和计算来说,int(1)和int(20)是相同的
VARCHAR和CHAR类型
char类型是定长的,而varchar存储可变字符串,比定长更省空间,但是varchar需要额外1或2个字节记录字符串长度,更新时也容易产生碎片
需要结合使用场景来选择:如果字符串列最大长度比平均长度大很多,或者列的更新很少,选择varchar较合适;如果要存很短的字符串,或者字符串值长度都相同,比如MD5值,或者列数据经常变更,选择使用char类型
DATETIME和TIMESTAMP类型
datetime的范围更大,能表示从1001到9999年,timestamp只能表示从1970年到2038年。datetime与时区无关,timestamp显示值依赖于时区。在大多数场景下,这两种类型都能良好地工作,但是建议使用timestamp,因为datetime占用8个字节,timestamp只占用了4个字节,timestamp空间效率更高
BLOB和TEXT类型
blob和text都是为存储很大数据而设计的字符串数据类型,分别采用二进制和字符方式存储
在实际使用中,要慎用这两种类型,它们的查询效率很低,如果字段必须要使用这两种类型,可以把此字段分离成子表,需要查询此字段时使用联合查询,这样可以提高主表的查询效率
范式化
当数据较好范式化时,修改的数据更少,而且范式化的表通常要小,可以有更多的数据缓存在内存中,所以执行操作会更快
缺点则是查询时需要更多的关联
第一范式:字段不可分割,数据库默认支持
第二范式:消除对主键的部分依赖,可以在表中加上一个与业务逻辑无关的字段作为主键,比如用自增id
第三范式:消除对主键的传递依赖,可以将表拆分,减少数据冗余
硬件优化
MySQL 对硬件的要求主要体现在三个方面:磁盘、网络和内存
磁盘
磁盘应该尽量使用有高性能读写能力的磁盘,比如固态硬盘,这样就可以减少 I/O 运行的时间,从而提高了 MySQL 整体的运行效率
磁盘也可以尽量使用多个小磁盘而不是一个大磁盘,因为磁盘的转速是固定的,有多个小磁盘就相当于拥有多个并行运行的磁盘一样
网络
保证网络带宽的通畅(低延迟)以及够大的网络带宽是 MySQL 正常运行的基本条件,如果条件允许的话也可以设置多个网卡,以提高网络高峰期 MySQL 服务器的运行效率
内存
MySQL 服务器的内存越大,那么存储和缓存的信息也就越多,而内存的性能是非常高的,从而提高了整个 MySQL 的运行效率
最后
觉得有收获,希望帮忙点赞,转发下哈,谢谢,谢谢~
参考资料: