[1] U. Alon and E. Yahav, On the bottleneck of graph neural networks and its practical implications (2020) arXiv:2006.05205.
[2] Q. Li, Z. Han, X.-M. Wu, Deeper insights into graph convolutional networks for semi-supervised learning (2019) Proc. AAAI.
[3] K. Xu et al. How powerful are graph neural networks? (2019) Proc. ICLR.
[4] C. Morris et al. Weisfeiler and Leman go neural: Higher-order graph neural networks (2019) Proc. AAAI.
[5] K. Xu et al. What can neural networks reason about? (2019) arXiv:1905.13211.
[6] Q. Huang et al. Combining label propagation and simple models out-performs graph neural networks (2020) arXiv:2010.13993.
[7] F. Frasca et al. SIGN: Scalable Inception Graph Neural Networks (2020) arXiv:2004.11198.
[8] A. Graves, G. Wayne, and I. Danihelka, Neural Turing Machines (2014) arXiv:1410.5401.
[9] A. Graves et al. Hybrid computing using a neural network with dynamic external memory (2016). Nature 538:471–476.
[10] G. Yehuda, M. Gabel, and A. Schuster. It’s not what machines can learn, it’s what we cannot teach (2020) arXiv:2002.09398.
[11] K. Xu et al. How neural networks extrapolate: From feedforward to graph neural networks (2020) arXiv:2009.11848.
[12] P. Veličković et al., Neural execution of graph algorithms (2019) arXiv:1910.10593.
[13] O. Richter and R. Wattenhofer, Normalized attention without probability cage (2020) arXiv:2005.09561.
[14] H. Tang et al., Towards scale-invariant graph-related problem solving by iterative homogeneous graph neural networks (2020) arXiv:2010.13547.
[15] P. Veličković et al. Pointer Graph Networks (2020) Proc. NeurIPS.
[16] Y. Yan et al. Neural execution engines: Learning to execute subroutines (2020) Proc. ICLR.
[17] C. K. Joshi et al. Learning TSP requires rethinking generalization (2020) arXiv:2006.07054.
[18] A. Deac et al. XLVIN: eXecuted Latent Value Iteration Nets (2020) arXiv:2010.13146.
[19] S. Löwe et al., Amortized Causal Discovery: Learning to infer causal graphs from time-series data (2020) arXiv:2006.10833.
[20] Y. Li et al., Causal discovery in physical systems from videos (2020) Proc. NeurIPS.
[21] D. Bieber et al., Learning to execute programs with instruction pointer attention graph neural networks (2020) Proc. NeurIPS.
[22] A. Kazi et al., Differentiable Graph Module (DGM) for graph convolutional networks (2020) arXiv:2002.04999
[23] D. D. Johnson, H. Larochelle, and D. Tarlow., Learning graph structure with a finite-state automaton layer (2020). arXiv:2007.04929.
[24] T. Pfaff et al., Learning mesh-based simulation with graph networks (2020) arXiv:2010.03409.
[25] T. Kipf et al., Contrastive learning of structured world models (2020) Proc. ICLR
[26] F. Locatello et al., Object-centric learning with slot attention (2020) Proc. NeurIPS.
[27] W. Azizian and M. Lelarge, Characterizing the expressive power of invariant and equivariant graph neural networks (2020) arXiv:2006.15646.
[28] A. Loukas, What graph neural networks cannot learn: depth vs width (2020) Proc. ICLR.
[29] Z. Chen et al., Can graph neural networks count substructures? (2020) Proc. NeurIPS.
[30] A. Bojchevski et al., Scaling graph neural networks with approximate PageRank (2020) Proc. KDD.
[31] E. Rossi et al., Temporal Graph Networks for deep learning on dynamic graphs (2020) arXiv:2006.10637.
[32] S. Kumar, X. Zhang, and J. Leskovec, Predicting dynamic embedding trajectory in temporal interaction networks (2019) Proc. KDD.
[33] R. Trivedi et al., DyRep: Learning representations over dynamic graphs (2019) Proc. ICLR.
[34] D. Xu et al., Inductive representation learning on temporal graphs (2019) Proc. ICLR.
[35] M. Noorshams, S. Verma, and A. Hofleitner, TIES: Temporal Interaction Embeddings for enhancing social media integrity at Facebook (2020) arXiv:2002.07917.
[36] X. Wang et al., APAN: Asynchronous Propagation Attention Network for real-time temporal graph embedding (2020) arXiv:2011.11545.
[37] E. A. Meirom et al., How to stop epidemics: Controlling graph dynamics with reinforcement learning and graph neural networks (2020) arXiv:2010.05313.
[38] S. Hooker, Hardware lottery (2020), arXiv:2009.06489.
[39] P. E. Sarlin et al., SuperGlue: Learning feature matching with graph neural networks (2020). Proc. CVPR.
[40] S. Ruhk et al., Learning representations of irregular particle-detector geometry with distance-weighted graph networks (2019) arXiv:1902.07987.
[41] J. Shlomi, P. Battaglia, J.-R. Vlimant, Graph Neural Networks in particle physics (2020) arXiv:2007.13681.
[42] J. Krupa et al., GPU coprocessors as a service for deep learning inference in high energy physics (2020) arXiv:2007.10359.
[43] A. Heintz et al., Accelerated charged particle tracking with graph neural networks on FPGAs (2020) arXiv:2012.01563.
[44] M. Cranmer et al., Discovering symbolic models from deep learning with inductive biases (2020) arXiv:2006.11287. Miles Cranmer is unrelated to Kyle Cranmer, though both are co-authors of the paper. See also the video presentation of the paper.
[45] Q. Cai et al., A survey on multimodal data-driven smart healthcare systems: Approaches and applications (2020) IEEE Access 7:133583–133599
[46] K. Gopinath, C. Desrosiers, and H. Lombaert, Graph domain adaptation for alignment-invariant brain surface segmentation (2020) arXiv:2004.00074
[47] J. Liu et al., Identification of early mild cognitive impairment using multi-modal data and graph convolutional networks (2020) BMC Bioinformatics 21(6):1–12
[48] H. E. Manoochehri and M. Nourani, Drug-target interaction prediction using semi-bipartite graph model and deep learning (2020). BMC Bioinformatics 21(4):1–16
[49] Y. Huang and A. C. Chung, Edge-variational graph convolutional networks for uncertainty-aware disease prediction (2020) Proc. MICCAI
[50] L. Cosmo et al., Latent-graph learning for disease prediction (2020) Proc. MICCAI
[51] G. Vivar et al., Simultaneous imputation and disease classification in incomplete medical datasets using Multigraph Geometric Matrix Completion (2020) arXiv:2005.06935.
[52] X. Li and J. Duncan, BrainGNN: Interpretable brain graph neural network for fMRI analysis (2020) bioRxiv:2020.05.16.100057
[53] X. Yu et al., ResGNet-C: A graph convolutional neural network for detection of COVID-19 (2020) Neurocomputing.
[54] P. Gainza et al., Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning (2020) Nature Methods 17(2):184–192.
[55] F. Sverrisson et al., Fast end-to-end learning on protein surfaces (2020) bioRxiv:2020.12.28.424589.
[56] A. Klimovskaia et al., Poincaré maps for analyzing complex hierarchies in single-cell data (2020) Nature Communications 11.
[57] J. Jumper et al., High accuracy protein structure prediction using deep learning (2020) a.k.a. AlphaFold 2.0 (paper not yet available).
[58] J. M. Stokes et al., A deep learning approach to antibiotic discovery (2020) Cell 180(4):688–702.
[59] D. Morselli Gysi et al., Network medicine framework for identifying drug repurposing opportunities for COVID-19 (2020) arXiv:2004.07229.