社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  Python

爱了爱了!0.052秒打开100GB数据,这个Python开源库火爆了!

机器学习算法与Python学习 • 4 年前 • 584 次点击  






,感觉与Pandas非常相似。","27:"12""],[20," ","27:"12"|bullet-id:"yB7q"|bullet:"circle""],[20,"精益:分成多个包","27:"12""],[20," ","27:"12"|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-core:数据集和核心算法,将numpy数组作为输入列。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-hdf5:将内存映射的numpy数组提供给数据集。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-arrow:"],[20,"箭头","0:"%230366d6"|16:"https%3A%2F%2Farrow.apache.org%2F""],[20,"支持跨语言数据共享。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-viz:基于matplotlib的可视化。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-jupyter:基于Jupyter小部件/ ipywidgets,bqplot,ipyvolume和ipyleaflet的交互式可视化。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-astro:与天文学有关的转换和FITS文件支持。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-server:提供服务器以远程访问数据集。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-distributed:(概念证明)将多个服务器/群集组合到单个数据集中以进行分布式计算。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-qt:使用Qt GUI编写的程序。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex:安装上述所有程序的meta包。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-ml:具有自动流水线的"],[20,"机器学习","0:"%230366d6"|16:"http%3A%2F%2Fdocs.vaex.io%2Fen%2Flatest%2Fml.html""],[20,"。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"Jupyter集成:vaex-jupyter将在Jupyter笔记本和Jupyter实验室中为您提供交互式可视化和选择。","27:"12""],[20," ","27:"12"|bullet-id:"yB7q"|bullet:"circle""],[20," ","7:3"],[20,"我希望这篇文章是对","27:"12""],[20," Vaex ","0:"%231458d4"|16:"https%3A%2F%2Fgithub.com%2Fvaexio%2Fvaex"|27:"12""],[20,"一个有用的介绍,它会帮你缓解可能面临的一些“麻烦数据”的问题,至少在涉及表数据集时是这样的。如果你对探索本文中用到的数据集感兴趣,可以直接在 S3 中配合 Vaex 使用它,请参阅完整的","27:"12""],[20," Jupyter notebook ","0:"%231458d4"|16:"https%3A%2F%2Fnbviewer.jupyter.org%2Fgithub%2Fvaexio%2Fvaex-examples%2Fblob%2Fmaster%2Fmedium-nyc-taxi-data-eda%2Fvaex-taxi-article.ipynb"|27:"12""],[20,"了解如何实现。","27:"12""],[20," ","7:3"],[20,"有了 Vaex,你可以在短短几秒内遍历超过 10 亿行数据,计算各种统计、聚合并产出信息图表,这一切都能在你的笔记本电脑上完成。它","27:"12""],[20,"免费且开源","0:"%231458d4"|16:"https%3A%2F%2Fgithub.com%2Fvaexio%2Fvaex"|27:"12""],[20,",你可以尝试一下!","27:"12""],[20," ","7:3"],[20,"数据科学快乐!","27:"12""],[20," ","7:3"],[20,"Vaex 官方网站:","27:"12""],[20," https://vaex.io/ ","0:"%231458d4"|16:"https%3A%2F%2Fvaex.io%2F"|27:"12""],[20,",目前官方团队提供 1 小时免费咨询支持。","27:"12""]]">

点击 机器学习算法与Python学习 ,选择加星标

精彩内容不迷路


编译 | AI科技大本营(ID:rgznai100)

文末有送书福利


,感觉与Pandas非常相似。","27:"12""],[20," ","27:"12"|bullet-id:"yB7q"|bullet:"circle""],[20,"精益:分成多个包","27:"12""],[20," ","27:"12"|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-core:数据集和核心算法,将numpy数组作为输入列。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-hdf5:将内存映射的numpy数组提供给数据集。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-arrow:"],[20,"箭头","0:"%230366d6"|16:"https%3A%2F%2Farrow.apache.org%2F""],[20,"支持跨语言数据共享。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-viz:基于matplotlib的可视化。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-jupyter:基于Jupyter小部件/ ipywidgets,bqplot,ipyvolume和ipyleaflet的交互式可视化。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-astro:与天文学有关的转换和FITS文件支持。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-server:提供服务器以远程访问数据集。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-distributed:(概念证明)将多个服务器/群集组合到单个数据集中以进行分布式计算。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-qt:使用Qt GUI编写的程序。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex:安装上述所有程序的meta包。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-ml:具有自动流水线的"],[20,"机器学习","0:"%230366d6"|16:"http%3A%2F%2Fdocs.vaex.io%2Fen%2Flatest%2Fml.html""],[20,"。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"Jupyter集成:vaex-jupyter将在Jupyter笔记本和Jupyter实验室中为您提供交互式可视化和选择。","27:"12""],[20," ","27:"12"|bullet-id:"yB7q"|bullet:"circle""],[20," ","7:3"],[20,"我希望这篇文章是对","27:"12""],[20," Vaex ","0:"%231458d4"|16:"https%3A%2F%2Fgithub.com%2Fvaexio%2Fvaex"|27:"12""],[20,"一个有用的介绍,它会帮你缓解可能面临的一些“麻烦数据”的问题,至少在涉及表数据集时是这样的。如果你对探索本文中用到的数据集感兴趣,可以直接在 S3 中配合 Vaex 使用它,请参阅完整的","27:"12""],[20," Jupyter notebook ","0:"%231458d4"|16:"https%3A%2F%2Fnbviewer.jupyter.org%2Fgithub%2Fvaexio%2Fvaex-examples%2Fblob%2Fmaster%2Fmedium-nyc-taxi-data-eda%2Fvaex-taxi-article.ipynb"|27:"12""],[20,"了解如何实现。","27:"12""],[20," ","7:3"],[20,"有了 Vaex,你可以在短短几秒内遍历超过 10 亿行数据,计算各种统计、聚合并产出信息图表,这一切都能在你的笔记本电脑上完成。它","27:"12""],[20,"免费且开源","0:"%231458d4"|16:"https%3A%2F%2Fgithub.com%2Fvaexio%2Fvaex"|27:"12""],[20,",你可以尝试一下!","27:"12""],[20," ","7:3"],[20,"数据科学快乐!","27:"12""],[20," ","7:3"],[20,"Vaex 官方网站:","27:"12""],[20," https://vaex.io/ ","0:"%231458d4"|16:"https%3A%2F%2Fvaex.io%2F"|27:"12""],[20,",目前官方团队提供 1 小时免费咨询支持。","27:"12""]]">

许多组织都在尝试收集和利用尽可能多的数据,以改善其经营方式,增加收入和提升影响力。因此,数据科学家面对50GB甚至500GB大小的数据集情况变得越来越普遍。

 

不过,这类数据集使用起来不太容易。它们足够小,可以装入日常笔记本电脑的硬盘驱动器中,但同时大到无法装入RAM,导致它们已经很难打开和检查,更不用说探索或分析了。

 

处理此类数据集时,通常采用3种策略。

 

第一种是对数据进行二次采样,但缺点很明显:你可能因为忽视相关部分数据而错过关键洞察,甚至更糟的是,这会误解了数据所阐释的含义。

 

第二种策略是使用分布式计算。在某些情况下这是一种有效的方法,但它需要管理和维护集群的大量开销。

 

又或者,你可以租用一个强大的云实例,该实例具有处理相关数据所需的内存。例如,AWS提供具有TB级RAM的实例。在这种情况下,你仍然必须管理云数据存储区,每次实例启动时,都需要等待数据从存储空间传输到实例,同时,还要考虑将数据存储在云上的合规性问题,以及在远程计算机上工作带来的不便。更不别说成本,尽管一开始成本很低,但后续往往会增加。

 

Vaex是解决这个问题的新方法。它是一种几乎可以对任意大小的数据进行数据科学研究的更快、更安全、更方便的方法,只要数据集可以安装在你的笔记本电脑,台式机或服务器硬盘上。


什么是Vaex?

 

Vaex 是一个开源的 DataFrame 库(类似于Pandas),对和你硬盘空间一样大小的表格数据集,它可以有效进行可视化、探索、分析甚至进行实践机器学习。

 


它可以在N维网格上计算每秒超过十亿(10^9)个对象/行的统计信息,例如均值、总和、计数、标准差等 。使用直方图、密度图和三维体绘制完成可视化,从而可以交互式探索大数据。Vaex使用内存映射、零内存复制策略获得最佳性能(不浪费内存)。

 

为实现这些功能,Vaex 采用内存映射、高效的核外算法和延迟计算等概念。所有这些都封装为类 Pandas 的 API,因此,任何人都能快速上手。

 

十亿级计程车的数据分析


为了说明这一概念,让我们对一个数据集进行简单的探索性数据分析,该数据集并不适合典型笔记本电脑的RAM。

 

本文中将使用纽约市(NYC)出租车数据集,其中包含标志性的黄色出租车在2009年至2015年之间进行的超过10亿次出行的信息。数据可以从网站( https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page)下载,并且为CSV格式。完整的分析可以在此Jupyter笔记本中单独查看(https://nbviewer.jupyter.org/github/vaexio/vaex-examples/blob/master/medium-nyc-taxi-data-eda/vaex-taxi-article.ipynb)。


为什么要选择vaex


  • 性能:处理海量表格数据,每秒处理超过十亿行

  • 虚拟列:动态计算,不浪费内存

  • 高效的内存在执行过滤/选择/子集时没有内存副本。

  • 可视化:直接支持,单线通常就足够了。

  • 用户友好的API:只需处理一个数据集对象,制表符补全和docstring可以帮助你:ds.mean,类似于Pandas。

  • 精益:分成多个包

  • Jupyter集成:vaex-jupyter将在Jupyter笔记本和Jupyter实验室中提供交互式可视化和选择。

 

打开100GB数据集只需0.052秒


第一步是将数据转换为内存可映射文件格式,例如Apache Arrow,Apache Parquet或HDF5。在此处也可以找到如何将CSV数据转换为HDF5的示例。数据变为内存可映射格式后,即使在磁盘上的大小超过100GB,也可以使用Vaex即时打开(只需0.052秒!):


       


为什么这么快?当使用Vaex打开内存映射文件时,实际上没有进行任何数据读取。Vaex仅读取文件的元数据,例如磁盘上数据的位置,数据结构(行数、列数、列名和类型),文件说明等。那么,如果我们要检查数据或与数据交互怎么办?打开数据集会生成一个标准的DataFrame并对其进行快速检查:

   

  

注意,单元执行时间太短了。这是因为显示Vaex DataFrame或列仅需要从磁盘读取前后5行数据。这将我们引向另一个重点:Vaex只会在需要时遍历整个数据集,并且会尝试通过尽可能少的数据传递来做到这一点。


无论如何,让我们从极端异常值或错误数据输入值开始清除此数据集。一个很好的方法是使用describe方法对数据进行高级概述,其中显示了样本数、缺失值数和每一列的数据类型。如果列的数据类型为数字,则还将显示平均值、标准偏差以及最小值和最大值。所有这些统计信息都是通过对数据的一次传递来计算的。

       

     

使用describe方法获得 DataFrame 的高级概览,注意这个 DataFrame 包含 18 列数据,不过截图只展示了前 7 列。

 

该describe方法很好地体现了Vaex的功能和效率:所有这些统计数据都是在我的MacBook Pro(2018款15英寸,2.6GHz Intel Core i7,32GB RAM)上用不到3分钟的时间计算出来的。其他库或方法都需要分布式计算或拥有超过100GB的云实例来执行相同的计算。而使用Vaex,你所需要的只是数据,以及只有几GB RAM的笔记本电脑。

 

查看describe的输出,很容易注意到数据包含一些严重的异常值。

 

首先开始检查上车地点。消除异常值的最简单方法是简单地绘制上下车地点的位置,并直观地定义我们要集中分析的NYC区域。由于我们正在使用如此大的数据集,因此直方图是最有效的可视化效果。使用Vaex创建和显示直方图和热力图的速度很快,而且图表可以交互!

 


一旦我们通过交互决定要关注的NYC区域,就可以简单地创建一个筛选后的DataFrame: 

   

         

关于上面的代码,最酷的事情是它需要执行的内存量可以忽略不计!在筛选Vaex DataFrame时不会复制数据,而是仅创建对原始对象的引用,在该引用上应用二进制掩码。用掩码选择要显示的行,并将其用于将来的计算。这将为我们节省100GB的RAM,而像今天许多标准数据科学工具却要复制数据。


现在,检查一下该passenger_count列。单次出租车行程记录的最大乘客数为255,这似乎有些夸张。计算每次行程的乘客人数,使用以下value_counts方法很容易做到这一点:

       

在 10 亿行数据上使用 value_counts 方法只需要 20 秒

 

从上图可以看出,载客超过6人的行程可能是罕见的异常值,或者仅仅是错误的数据输入,还有大量的0位乘客的行程。由于目前我们尚不了解这些行程是否合法,因此我们也将其过滤掉。  

       

 

让我们对行程距离进行类似的练习。由于这是一个连续变量,因此我们可以绘制行程距离的分布图。让我们绘制一个更合理范围的直方图。

       

纽约出租车数据行程距离直方图

 

从上图可以看出,出行次数随着距离的增加而减少。在距离约100英里处,分布有明显下降。目前,我们将以此为起点,根据行程距离消除极端离群值:

       

       

出行距离一列中存在极端异常值,这也是研究出行时间和出租车平均速度的动机。这些功能在数据集中尚不可用,但计算起来很简单:

       


上面的代码块无需内存,无需花费时间即可执行!这是因为代码只会创建虚拟列。这些列仅包含数学表达式,并且仅在需要时才进行评估。此外,虚拟列的行为与任何其他常规列都相同。注意,其他标准库将需要10 GB的RAM才能进行相同的操作。


好了,让我们来绘制行程耗费时间的分布:

    

纽约超过 10 亿次出租车行程耗费时间的直方图

 

从上面的图中可以看出,尽管有一些行程可能需要花费4至5个小时,但95%的出租车花费不到30分钟即可到达目的地。你能想象在纽约市被困出租车中超过3个小时吗?无论如何,我们要保持开放的态度,并考虑所有花费时间少于3小时的行程:

       

     

现在,让我们研究出租车的平均速度,同时选择一个合理的数据范围:

     

出租车平均速度分布

 

根据分布趋平的位置,我们可以推断出在每小时1到60英里之间合理的平均滑行速度,因此可以更新筛选后的DataFrame:



将重点转移到出租车费用上。从describe方法的输出中,我们可以看到在fare_amount,total_amount和tip_amount列中有一些疯狂的异常值。对于初学者,任何这些列中的任何值都不应为负。同时数字表明,一些幸运的司机仅凭开一次出租车便几乎成为了百万富翁。让我们看一下在相对合理的范围内这些数量的分布:

       

纽约超过 10 亿次出租车行程的车费、总额和小费的分布。在笔记本上绘制这些图表只用了 31 秒!


我们看到上述所有三个分布都有相当长的尾部。尾部的某些值可能是合法的,而其他值可能是错误的数据输入。无论如何,让我们先保守下,只考虑fare_amount,total_amount和tip_amount少于$200的行程。我们还要求fare_amount,total_amount值大于$0。

       


最后,在初步清理完所有数据之后,让我们看看有多少出租车数据需要进行分析:

       


还有超过11亿次旅行!大量的数据可以使你深入了解出租车行程背后的信息。



后记


此外,作者还从出租车司机最大化利润等角度利用Vaex进行分析数据。总之,Vaex会帮你缓解可能面临的一些数据挑战的问题。


有了 Vaex,你可以在短短几秒内遍历超过 10 亿行数据,计算各种统计、聚合并产出信息图表,这一切都能在你的笔记本电脑上完成。它免费且开源。


如果你对探索本文中用到的数据集感兴趣,可以直接在 S3 中配合 Vaex 使用它,请参阅完整的 Jupyter notebook 了解如何实现。


Vaex 官方网站:https://vaex.io/  

文档:https://docs.vaex.io/ 

GitHub:https : //github.com/vaexio/vaex 

PyPi:https://pypi.python.org/pypi/vaex/


福利时间


,感觉与Pandas非常相似。","27:"12""],[20," ","27:"12"|bullet-id:"yB7q"|bullet:"circle""],[20,"精益:分成多个包","27:"12""],[20," ","27:"12"|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-core:数据集和核心算法,将numpy数组作为输入列。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-hdf5:将内存映射的numpy数组提供给数据集。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-arrow:"],[20,"箭头","0:"%230366d6"|16:"https%3A%2F%2Farrow.apache.org%2F""],[20,"支持跨语言数据共享。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-viz:基于matplotlib的可视化。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-jupyter:基于Jupyter小部件/ ipywidgets,bqplot,ipyvolume和ipyleaflet的交互式可视化。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-astro:与天文学有关的转换和FITS文件支持。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-server:提供服务器以远程访问数据集。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-distributed:(概念证明)将多个服务器/群集组合到单个数据集中以进行分布式计算。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-qt:使用Qt GUI编写的程序。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex:安装上述所有程序的meta包。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-ml:具有自动流水线的"],[20,"机器学习","0:"%230366d6"|16:"http%3A%2F%2Fdocs.vaex.io%2Fen%2Flatest%2Fml.html""],[20,"。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"Jupyter集成:vaex-jupyter将在Jupyter笔记本和Jupyter实验室中为您提供交互式可视化和选择。","27:"12""],[20," ","27:"12"|bullet-id:"yB7q"|bullet:"circle""],[20," ","7:3"],[20,"我希望这篇文章是对","27:"12""],[20," Vaex ","0:"%231458d4"|16:"https%3A%2F%2Fgithub.com%2Fvaexio%2Fvaex"|27:"12""],[20,"一个有用的介绍,它会帮你缓解可能面临的一些“麻烦数据”的问题,至少在涉及表数据集时是这样的。如果你对探索本文中用到的数据集感兴趣,可以直接在 S3 中配合 Vaex 使用它,请参阅完整的","27:"12""],[20," Jupyter notebook ","0:"%231458d4"|16:"https%3A%2F%2Fnbviewer.jupyter.org%2Fgithub%2Fvaexio%2Fvaex-examples%2Fblob%2Fmaster%2Fmedium-nyc-taxi-data-eda%2Fvaex-taxi-article.ipynb"|27:"12""],[20,"了解如何实现。","27:"12""],[20," ","7:3"],[20,"有了 Vaex,你可以在短短几秒内遍历超过 10 亿行数据,计算各种统计、聚合并产出信息图表,这一切都能在你的笔记本电脑上完成。它","27:"12""],[20,"免费且开源","0:"%231458d4"|16:"https%3A%2F%2Fgithub.com%2Fvaexio%2Fvaex"|27:"12""],[20,",你可以尝试一下!","27:"12""],[20," ","7:3"],[20,"数据科学快乐!","27:"12""],[20," ","7:3"],[20,"Vaex 官方网站:","27:"12""],[20," https://vaex.io/ ","0:"%231458d4"|16:"https%3A%2F%2Fvaex.io%2F"|27:"12""],[20,",目前官方团队提供 1 小时免费咨询支持。","27:"12""]]" style="font-family: 楷体, 楷体_GB2312, SimKai; letter-spacing: 0.5px; color: rgb(51, 51, 51); text-align: right; widows: 1;">奖品: ,感觉与Pandas非常相似。","27:"12""],[20," ","27:"12"|bullet-id:"yB7q"|bullet:"circle""],[20,"精益:分成多个包","27:"12""],[20," ","27:"12"|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-core:数据集和核心算法,将numpy数组作为输入列。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-hdf5:将内存映射的numpy数组提供给数据集。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-arrow:"],[20,"箭头","0:"%230366d6"|16:"https%3A%2F%2Farrow.apache.org%2F""],[20,"支持跨语言数据共享。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-viz:基于matplotlib的可视化。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-jupyter:基于Jupyter小部件/ ipywidgets,bqplot,ipyvolume和ipyleaflet的交互式可视化。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-astro:与天文学有关的转换和FITS文件支持。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-server:提供服务器以远程访问数据集。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-distributed:(概念证明)将多个服务器/群集组合到单个数据集中以进行分布式计算。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-qt:使用Qt GUI编写的程序。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex:安装上述所有程序的meta包。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-ml:具有自动流水线的"],[20,"机器学习","0:"%230366d6"|16:"http%3A%2F%2Fdocs.vaex.io%2Fen%2Flatest%2Fml.html""],[20,"。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"Jupyter集成:vaex-jupyter将在Jupyter笔记本和Jupyter实验室中为您提供交互式可视化和选择。","27:"12""],[20," ","27:"12"|bullet-id:"yB7q"|bullet:"circle""],[20," ","7:3"],[20,"我希望这篇文章是对","27:"12""],[20," Vaex ","0:"%231458d4"|16:"https%3A%2F%2Fgithub.com%2Fvaexio%2Fvaex"|27:"12""],[20,"一个有用的介绍,它会帮你缓解可能面临的一些“麻烦数据”的问题,至少在涉及表数据集时是这样的。如果你对探索本文中用到的数据集感兴趣,可以直接在 S3 中配合 Vaex 使用它,请参阅完整的","27:"12""],[20," Jupyter notebook ","0:"%231458d4"|16:"https%3A%2F%2Fnbviewer.jupyter.org%2Fgithub%2Fvaexio%2Fvaex-examples%2Fblob%2Fmaster%2Fmedium-nyc-taxi-data-eda%2Fvaex-taxi-article.ipynb"|27:"12""],[20,"了解如何实现。","27:"12""],[20," ","7:3"],[20,"有了 Vaex,你可以在短短几秒内遍历超过 10 亿行数据,计算各种统计、聚合并产出信息图表,这一切都能在你的笔记本电脑上完成。它","27:"12""],[20,"免费且开源","0:"%231458d4"|16:"https%3A%2F%2Fgithub.com%2Fvaexio%2Fvaex"|27:"12""],[20,",你可以尝试一下!","27:"12""],[20," ","7:3"],[20,"数据科学快乐!","27:"12""],[20," ","7:3"],[20,"Vaex 官方网站:","27:"12""],[20," https://vaex.io/ ","0:"%231458d4"|16:"https%3A%2F%2Fvaex.io%2F"|27:"12""],[20,",目前官方团队提供 1 小时免费咨询支持。","27:"12""]]" style="font-family: 楷体, 楷体_GB2312, SimKai; letter-spacing: 0.5px; color: rgb(51, 51, 51); text-align: right; widows: 1;">《Python Web开发从入门到精通,感觉与Pandas非常相似。","27:"12""],[20," ","27:"12"|bullet-id:"yB7q"|bullet:"circle""],[20,"精益:分成多个包","27:"12""],[20," ","27:"12"|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-core:数据集和核心算法,将numpy数组作为输入列。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-hdf5:将内存映射的numpy数组提供给数据集。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-arrow:"],[20,"箭头","0:"%230366d6"|16:"https%3A%2F%2Farrow.apache.org%2F""],[20,"支持跨语言数据共享。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-viz:基于matplotlib的可视化。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-jupyter:基于Jupyter小部件/ ipywidgets,bqplot,ipyvolume和ipyleaflet的交互式可视化。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-astro:与天文学有关的转换和FITS文件支持。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-server:提供服务器以远程访问数据集。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-distributed:(概念证明)将多个服务器/群集组合到单个数据集中以进行分布式计算。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-qt:使用Qt GUI编写的程序。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex:安装上述所有程序的meta包。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-ml:具有自动流水线的"],[20,"机器学习","0:"%230366d6"|16:"http%3A%2F%2Fdocs.vaex.io%2Fen%2Flatest%2Fml.html""],[20,"。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"Jupyter集成:vaex-jupyter将在Jupyter笔记本和Jupyter实验室中为您提供交互式可视化和选择。","27:"12""],[20," ","27:"12"|bullet-id:"yB7q"|bullet:"circle""],[20," ","7:3"],[20,"我希望这篇文章是对","27:"12""],[20," Vaex ","0:"%231458d4"|16:"https%3A%2F%2Fgithub.com%2Fvaexio%2Fvaex"|27:"12""],[20,"一个有用的介绍,它会帮你缓解可能面临的一些“麻烦数据”的问题,至少在涉及表数据集时是这样的。如果你对探索本文中用到的数据集感兴趣,可以直接在 S3 中配合 Vaex 使用它,请参阅完整的","27:"12""],[20," Jupyter notebook ","0:"%231458d4"|16:"https%3A%2F%2Fnbviewer.jupyter.org%2Fgithub%2Fvaexio%2Fvaex-examples%2Fblob%2Fmaster%2Fmedium-nyc-taxi-data-eda%2Fvaex-taxi-article.ipynb"|27:"12""],[20,"了解如何实现。","27:"12""],[20," ","7:3"],[20,"有了 Vaex,你可以在短短几秒内遍历超过 10 亿行数据,计算各种统计、聚合并产出信息图表,这一切都能在你的笔记本电脑上完成。它","27:"12""],[20,"免费且开源","0:"%231458d4"|16:"https%3A%2F%2Fgithub.com%2Fvaexio%2Fvaex"|27:"12""],[20,",你可以尝试一下!","27:"12""],[20," ","7:3"],[20,"数据科学快乐!","27:"12""],[20," ","7:3"],[20,"Vaex 官方网站:","27:"12""],[20," https://vaex.io/ ","0:"%231458d4"|16:"https%3A%2F%2Fvaex.io%2F"|27:"12""],[20,",目前官方团队提供 1 小时免费咨询支持。","27:"12""]]" style="font-family: 楷体, 楷体_GB2312, SimKai; letter-spacing: 0.5px; color: rgb(51, 51, 51); text-align: right; widows: 1;">》x 4



,感觉与Pandas非常相似。","27:"12""],[20," ","27:"12"|bullet-id:"yB7q"|bullet:"circle""],[20,"精益:分成多个包","27:"12""],[20," ","27:"12"|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-core:数据集和核心算法,将numpy数组作为输入列。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-hdf5:将内存映射的numpy数组提供给数据集。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-arrow:"],[20,"箭头","0:"%230366d6"|16:"https%3A%2F%2Farrow.apache.org%2F""],[20,"支持跨语言数据共享。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-viz:基于matplotlib的可视化。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-jupyter:基于Jupyter小部件/ ipywidgets,bqplot,ipyvolume和ipyleaflet的交互式可视化。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-astro:与天文学有关的转换和FITS文件支持。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-server:提供服务器以远程访问数据集。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-distributed:(概念证明)将多个服务器/群集组合到单个数据集中以进行分布式计算。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-qt:使用Qt GUI编写的程序。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex:安装上述所有程序的meta包。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-ml:具有自动流水线的"],[20,"机器学习","0:"%230366d6"|16:"http%3A%2F%2Fdocs.vaex.io%2Fen%2Flatest%2Fml.html""],[20,"。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"Jupyter集成:vaex-jupyter将在Jupyter笔记本和Jupyter实验室中为您提供交互式可视化和选择。","27:"12""],[20," ","27:"12"|bullet-id:"yB7q"|bullet:"circle""],[20," ","7:3"],[20,"我希望这篇文章是对","27:"12""],[20," Vaex ","0:"%231458d4"|16:"https%3A%2F%2Fgithub.com%2Fvaexio%2Fvaex"|27:"12""],[20,"一个有用的介绍,它会帮你缓解可能面临的一些“麻烦数据”的问题,至少在涉及表数据集时是这样的。如果你对探索本文中用到的数据集感兴趣,可以直接在 S3 中配合 Vaex 使用它,请参阅完整的","27:"12""],[20," Jupyter notebook ","0:"%231458d4"|16:"https%3A%2F%2Fnbviewer.jupyter.org%2Fgithub%2Fvaexio%2Fvaex-examples%2Fblob%2Fmaster%2Fmedium-nyc-taxi-data-eda%2Fvaex-taxi-article.ipynb"|27:"12""],[20,"了解如何实现。","27:"12""],[20," ","7:3"],[20,"有了 Vaex,你可以在短短几秒内遍历超过 10 亿行数据,计算各种统计、聚合并产出信息图表,这一切都能在你的笔记本电脑上完成。它","27:"12""],[20,"免费且开源","0:"%231458d4"|16:"https%3A%2F%2Fgithub.com%2Fvaexio%2Fvaex"|27:"12""],[20,",你可以尝试一下!","27:"12""],[20," ","7:3"],[20,"数据科学快乐!","27:"12""],[20," ","7:3"],[20,"Vaex 官方网站:","27:"12""],[20," https://vaex.io/ ","0:"%231458d4"|16:"https%3A%2F%2Fvaex.io%2F"|27:"12""],[20,",目前官方团队提供 1 小时免费咨询支持。","27:"12""]]" style="font-family: 楷体, 楷体_GB2312, SimKai; letter-spacing: 0.5px; color: rgb(51, 51, 51); font-size: 14px; text-align: right; widows: 1;">

,感觉与Pandas非常相似。","27:"12""],[20," ","27:"12"|bullet-id:"yB7q"|bullet:"circle""],[20,"精益:分成多个包","27:"12""],[20," ","27:"12"|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-core:数据集和核心算法,将numpy数组作为输入列。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-hdf5:将内存映射的numpy数组提供给数据集。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-arrow:"],[20,"箭头","0:"%230366d6"|16:"https%3A%2F%2Farrow.apache.org%2F""],[20,"支持跨语言数据共享。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-viz:基于matplotlib的可视化。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-jupyter:基于Jupyter小部件/ ipywidgets,bqplot,ipyvolume和ipyleaflet的交互式可视化。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-astro:与天文学有关的转换和FITS文件支持。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-server:提供服务器以远程访问数据集。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-distributed:(概念证明)将多个服务器/群集组合到单个数据集中以进行分布式计算。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-qt:使用Qt GUI编写的程序。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex:安装上述所有程序的meta包。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-ml:具有自动流水线的"],[20,"机器学习","0:"%230366d6"|16:"http%3A%2F%2Fdocs.vaex.io%2Fen%2Flatest%2Fml.html""],[20,"。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"Jupyter集成:vaex-jupyter将在Jupyter笔记本和Jupyter实验室中为您提供交互式可视化和选择。","27:"12""],[20," ","27:"12"|bullet-id:"yB7q"|bullet:"circle""],[20," ","7:3"],[20,"我希望这篇文章是对","27:"12""],[20," Vaex ","0:"%231458d4"|16:"https%3A%2F%2Fgithub.com%2Fvaexio%2Fvaex"|27:"12""],[20,"一个有用的介绍,它会帮你缓解可能面临的一些“麻烦数据”的问题,至少在涉及表数据集时是这样的。如果你对探索本文中用到的数据集感兴趣,可以直接在 S3 中配合 Vaex 使用它,请参阅完整的","27:"12""],[20," Jupyter notebook ","0:"%231458d4"|16:"https%3A%2F%2Fnbviewer.jupyter.org%2Fgithub%2Fvaexio%2Fvaex-examples%2Fblob%2Fmaster%2Fmedium-nyc-taxi-data-eda%2Fvaex-taxi-article.ipynb"|27:"12""],[20,"了解如何实现。","27:"12""],[20," ","7:3"],[20,"有了 Vaex,你可以在短短几秒内遍历超过 10 亿行数据,计算各种统计、聚合并产出信息图表,这一切都能在你的笔记本电脑上完成。它","27:"12""],[20,"免费且开源","0:"%231458d4"|16:"https%3A%2F%2Fgithub.com%2Fvaexio%2Fvaex"|27:"12""],[20,",你可以尝试一下!","27:"12""],[20," ","7:3"],[20,"数据科学快乐!","27:"12""],[20," ","7:3"],[20,"Vaex 官方网站:","27:"12""],[20," https://vaex.io/ ","0:"%231458d4"|16:"https%3A%2F%2Fvaex.io%2F"|27:"12""],[20,",目前官方团队提供 1 小时免费咨询支持。","27:"12""]]" style="font-family: 楷体, 楷体_GB2312, SimKai; letter-spacing: 0.5px; color: rgb(51, 51, 51); text-align: right; widows: 1;">参与方式:文末留言(字数不少于5个),点赞数最对多的4位读者为本次的幸运小伙伴


,感觉与Pandas非常相似。","27:"12""],[20," ","27:"12"|bullet-id:"yB7q"|bullet:"circle""],[20,"精益:分成多个包","27:"12""],[20," ","27:"12"|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-core:数据集和核心算法,将numpy数组作为输入列。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-hdf5:将内存映射的numpy数组提供给数据集。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-arrow:"],[20,"箭头","0:"%230366d6"|16:"https%3A%2F%2Farrow.apache.org%2F""],[20,"支持跨语言数据共享。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-viz:基于matplotlib的可视化。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-jupyter:基于Jupyter小部件/ ipywidgets,bqplot,ipyvolume和ipyleaflet的交互式可视化。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-astro:与天文学有关的转换和FITS文件支持。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-server:提供服务器以远程访问数据集。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-distributed:(概念证明)将多个服务器/群集组合到单个数据集中以进行分布式计算。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-qt:使用Qt GUI编写的程序。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex:安装上述所有程序的meta包。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-ml:具有自动流水线的"],[20,"机器学习","0:"%230366d6"|16:"http%3A%2F%2Fdocs.vaex.io%2Fen%2Flatest%2Fml.html""],[20,"。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"Jupyter集成:vaex-jupyter将在Jupyter笔记本和Jupyter实验室中为您提供交互式可视化和选择。","27:"12""],[20," ","27:"12"|bullet-id:"yB7q"|bullet:"circle""],[20," ","7:3"],[20,"我希望这篇文章是对","27:"12""],[20," Vaex ","0:"%231458d4"|16:"https%3A%2F%2Fgithub.com%2Fvaexio%2Fvaex"|27:"12""],[20,"一个有用的介绍,它会帮你缓解可能面临的一些“麻烦数据”的问题,至少在涉及表数据集时是这样的。如果你对探索本文中用到的数据集感兴趣,可以直接在 S3 中配合 Vaex 使用它,请参阅完整的","27:"12""],[20," Jupyter notebook ","0:"%231458d4"|16:"https%3A%2F%2Fnbviewer.jupyter.org%2Fgithub%2Fvaexio%2Fvaex-examples%2Fblob%2Fmaster%2Fmedium-nyc-taxi-data-eda%2Fvaex-taxi-article.ipynb"|27:"12""],[20,"了解如何实现。","27:"12""],[20," ","7:3"],[20,"有了 Vaex,你可以在短短几秒内遍历超过 10 亿行数据,计算各种统计、聚合并产出信息图表,这一切都能在你的笔记本电脑上完成。它","27:"12""],[20,"免费且开源","0:"%231458d4"|16:"https%3A%2F%2Fgithub.com%2Fvaexio%2Fvaex"|27:"12""],[20,",你可以尝试一下!","27:"12""],[20," ","7:3"],[20,"数据科学快乐!","27:"12""],[20," ","7:3"],[20,"Vaex 官方网站:","27:"12""],[20," https://vaex.io/ ","0:"%231458d4"|16:"https%3A%2F%2Fvaex.io%2F"|27:"12""],[20,",目前官方团队提供 1 小时免费咨询支持。","27:"12""]]" style="font-size: 15px; font-family: 楷体, 楷体_GB2312, SimKai; letter-spacing: 0.5px; color: rgb(51, 51, 51); text-align: right; widows: 1;">开奖时间:2020年11月18号20点,感觉与Pandas非常相似。","27:"12""],[20," ","27:"12"|bullet-id:"yB7q"|bullet:"circle""],[20,"精益:分成多个包","27:"12""],[20," ","27:"12"|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-core:数据集和核心算法,将numpy数组作为输入列。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-hdf5:将内存映射的numpy数组提供给数据集。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-arrow:"],[20,"箭头","0:"%230366d6"|16:"https%3A%2F%2Farrow.apache.org%2F""],[20,"支持跨语言数据共享。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-viz:基于matplotlib的可视化。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-jupyter:基于Jupyter小部件/ ipywidgets,bqplot,ipyvolume和ipyleaflet的交互式可视化。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-astro:与天文学有关的转换和FITS文件支持。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-server:提供服务器以远程访问数据集。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-distributed:(概念证明)将多个服务器/群集组合到单个数据集中以进行分布式计算。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-qt:使用Qt GUI编写的程序。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex:安装上述所有程序的meta包。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-ml:具有自动流水线的"],[20,"机器学习","0:"%230366d6"|16:"http%3A%2F%2Fdocs.vaex.io%2Fen%2Flatest%2Fml.html""],[20,"。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"Jupyter集成:vaex-jupyter将在Jupyter笔记本和Jupyter实验室中为您提供交互式可视化和选择。","27:"12""],[20," ","27:"12"|bullet-id:"yB7q"|bullet:"circle""],[20," ","7:3"],[20,"我希望这篇文章是对","27:"12""],[20," Vaex ","0:"%231458d4"|16:"https%3A%2F%2Fgithub.com%2Fvaexio%2Fvaex"|27:"12""],[20,"一个有用的介绍,它会帮你缓解可能面临的一些“麻烦数据”的问题,至少在涉及表数据集时是这样的。如果你对探索本文中用到的数据集感兴趣,可以直接在 S3 中配合 Vaex 使用它,请参阅完整的","27:"12""],[20," Jupyter notebook ","0:"%231458d4"|16:"https%3A%2F%2Fnbviewer.jupyter.org%2Fgithub%2Fvaexio%2Fvaex-examples%2Fblob%2Fmaster%2Fmedium-nyc-taxi-data-eda%2Fvaex-taxi-article.ipynb"|27:"12""],[20,"了解如何实现。","27:"12""],[20," ","7:3"],[20,"有了 Vaex,你可以在短短几秒内遍历超过 10 亿行数据,计算各种统计、聚合并产出信息图表,这一切都能在你的笔记本电脑上完成。它","27:"12""],[20,"免费且开源","0:"%231458d4"|16:"https%3A%2F%2Fgithub.com%2Fvaexio%2Fvaex"|27:"12""],[20,",你可以尝试一下!","27:"12""],[20," ","7:3"],[20,"数据科学快乐!","27:"12""],[20," ","7:3"],[20,"Vaex 官方网站:","27:"12""],[20," https://vaex.io/ ","0:"%231458d4"|16:"https%3A%2F%2Fvaex.io%2F"|27:"12""],[20,",目前官方团队提供 1 小时免费咨询支持。","27:"12""]]" style="font-size: 15px; font-family: 楷体, 楷体_GB2312, SimKai; letter-spacing: 0.5px; color: rgb(51, 51, 51); text-align: right; widows: 1;">(中奖小伙伴留言会被置顶,如有问题请添加小助手微信:MLAPython ,感觉与Pandas非常相似。","27:"12""],[20," ","27:"12"|bullet-id:"yB7q"|bullet:"circle""],[20,"精益:分成多个包","27:"12""],[20," ","27:"12"|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-core:数据集和核心算法,将numpy数组作为输入列。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-hdf5:将内存映射的numpy数组提供给数据集。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-arrow:"],[20,"箭头","0:"%230366d6"|16:"https%3A%2F%2Farrow.apache.org%2F""],[20,"支持跨语言数据共享。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-viz:基于matplotlib的可视化。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-jupyter:基于Jupyter小部件/ ipywidgets,bqplot,ipyvolume和ipyleaflet的交互式可视化。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-astro:与天文学有关的转换和FITS文件支持。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-server:提供服务器以远程访问数据集。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-distributed:(概念证明)将多个服务器/群集组合到单个数据集中以进行分布式计算。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-qt:使用Qt GUI编写的程序。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex:安装上述所有程序的meta包。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-ml:具有自动流水线的"],[20,"机器学习","0:"%230366d6"|16:"http%3A%2F%2Fdocs.vaex.io%2Fen%2Flatest%2Fml.html""],[20,"。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"Jupyter集成:vaex-jupyter将在Jupyter笔记本和Jupyter实验室中为您提供交互式可视化和选择。","27:"12""],[20," ","27:"12"|bullet-id:"yB7q"|bullet:"circle""],[20," ","7:3"],[20,"我希望这篇文章是对","27:"12""],[20," Vaex ","0:"%231458d4"|16:"https%3A%2F%2Fgithub.com%2Fvaexio%2Fvaex"|27:"12""],[20,"一个有用的介绍,它会帮你缓解可能面临的一些“麻烦数据”的问题,至少在涉及表数据集时是这样的。如果你对探索本文中用到的数据集感兴趣,可以直接在 S3 中配合 Vaex 使用它,请参阅完整的","27:"12""],[20," Jupyter notebook ","0:"%231458d4"|16:"https%3A%2F%2Fnbviewer.jupyter.org%2Fgithub%2Fvaexio%2Fvaex-examples%2Fblob%2Fmaster%2Fmedium-nyc-taxi-data-eda%2Fvaex-taxi-article.ipynb"|27:"12""],[20,"了解如何实现。","27:"12""],[20," ","7:3"],[20,"有了 Vaex,你可以在短短几秒内遍历超过 10 亿行数据,计算各种统计、聚合并产出信息图表,这一切都能在你的笔记本电脑上完成。它","27:"12""],[20,"免费且开源","0:"%231458d4"|16:"https%3A%2F%2Fgithub.com%2Fvaexio%2Fvaex"|27:"12""],[20,",你可以尝试一下!","27:"12""],[20," ","7:3"],[20,"数据科学快乐!","27:"12""],[20," ","7:3"],[20,"Vaex 官方网站:","27:"12""],[20," https://vaex.io/ ","0:"%231458d4"|16:"https%3A%2F%2Fvaex.io%2F"|27:"12""],[20,",目前官方团队提供 1 小时免费咨询支持。","27:"12""]]" style="font-size: 15px; font-family: 楷体, 楷体_GB2312, SimKai; letter-spacing: 0.5px; color: rgb(51, 51, 51); text-align: right; widows: 1;"> 咨询)

,感觉与Pandas非常相似。","27:"12""],[20," ","27:"12"|bullet-id:"yB7q"|bullet:"circle""],[20,"精益:分成多个包","27:"12""],[20," ","27:"12"|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-core:数据集和核心算法,将numpy数组作为输入列。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-hdf5:将内存映射的numpy数组提供给数据集。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-arrow:"],[20,"箭头","0:"%230366d6"|16:"https%3A%2F%2Farrow.apache.org%2F""],[20,"支持跨语言数据共享。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-viz:基于matplotlib的可视化。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-jupyter:基于Jupyter小部件/ ipywidgets,bqplot,ipyvolume和ipyleaflet的交互式可视化。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-astro:与天文学有关的转换和FITS文件支持。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-server:提供服务器以远程访问数据集。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-distributed:(概念证明)将多个服务器/群集组合到单个数据集中以进行分布式计算。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-qt:使用Qt GUI编写的程序。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex:安装上述所有程序的meta包。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-ml:具有自动流水线的"],[20,"机器学习","0:"%230366d6"|16:"http%3A%2F%2Fdocs.vaex.io%2Fen%2Flatest%2Fml.html""],[20,"。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"Jupyter集成:vaex-jupyter将在Jupyter笔记本和Jupyter实验室中为您提供交互式可视化和选择。","27:"12""],[20," ","27:"12"|bullet-id:"yB7q"|bullet:"circle""],[20," ","7:3"],[20,"我希望这篇文章是对","27:"12""],[20," Vaex ","0:"%231458d4"|16:"https%3A%2F%2Fgithub.com%2Fvaexio%2Fvaex"|27:"12""],[20,"一个有用的介绍,它会帮你缓解可能面临的一些“麻烦数据”的问题,至少在涉及表数据集时是这样的。如果你对探索本文中用到的数据集感兴趣,可以直接在 S3 中配合 Vaex 使用它,请参阅完整的","27:"12""],[20," Jupyter notebook ","0:"%231458d4"|16:"https%3A%2F%2Fnbviewer.jupyter.org%2Fgithub%2Fvaexio%2Fvaex-examples%2Fblob%2Fmaster%2Fmedium-nyc-taxi-data-eda%2Fvaex-taxi-article.ipynb"|27:"12""],[20,"了解如何实现。","27:"12""],[20," ","7:3"],[20,"有了 Vaex,你可以在短短几秒内遍历超过 10 亿行数据,计算各种统计、聚合并产出信息图表,这一切都能在你的笔记本电脑上完成。它","27:"12""],[20,"免费且开源","0:"%231458d4"|16:"https%3A%2F%2Fgithub.com%2Fvaexio%2Fvaex"|27:"12""],[20,",你可以尝试一下!","27:"12""],[20," ","7:3"],[20,"数据科学快乐!","27:"12""],[20," ","7:3"],[20,"Vaex 官方网站:","27:"12""],[20," https://vaex.io/ ","0:"%231458d4"|16:"https%3A%2F%2Fvaex.io%2F"|27:"12""],[20,",目前官方团队提供 1 小时免费咨询支持。","27:"12""]]" style="font-size: 15px; font-family: 楷体, 楷体_GB2312, SimKai; letter-spacing: 0.5px; color: rgb(51, 51, 51); text-align: right; widows: 1;">

,感觉与Pandas非常相似。","27:"12""],[20," ","27:"12"|bullet-id:"yB7q"|bullet:"circle""],[20,"精益:分成多个包","27:"12""],[20," ","27:"12"|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-core:数据集和核心算法,将numpy数组作为输入列。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-hdf5:将内存映射的numpy数组提供给数据集。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-arrow:"],[20,"箭头","0:"%230366d6"|16:"https%3A%2F%2Farrow.apache.org%2F""],[20,"支持跨语言数据共享。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-viz:基于matplotlib的可视化。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-jupyter:基于Jupyter小部件/ ipywidgets,bqplot,ipyvolume和ipyleaflet的交互式可视化。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-astro:与天文学有关的转换和FITS文件支持。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-server:提供服务器以远程访问数据集。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-distributed:(概念证明)将多个服务器/群集组合到单个数据集中以进行分布式计算。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-qt:使用Qt GUI编写的程序。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex:安装上述所有程序的meta包。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-ml:具有自动流水线的"],[20,"机器学习","0:"%230366d6"|16:"http%3A%2F%2Fdocs.vaex.io%2Fen%2Flatest%2Fml.html""],[20,"。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"Jupyter集成:vaex-jupyter将在Jupyter笔记本和Jupyter实验室中为您提供交互式可视化和选择。","27:"12""],[20," ","27:"12"|bullet-id:"yB7q"|bullet:"circle""],[20," ","7:3"],[20,"我希望这篇文章是对","27:"12""],[20," Vaex ","0:"%231458d4"|16:"https%3A%2F%2Fgithub.com%2Fvaexio%2Fvaex"|27:"12""],[20,"一个有用的介绍,它会帮你缓解可能面临的一些“麻烦数据”的问题,至少在涉及表数据集时是这样的。如果你对探索本文中用到的数据集感兴趣,可以直接在 S3 中配合 Vaex 使用它,请参阅完整的","27:"12""],[20," Jupyter notebook ","0:"%231458d4"|16:"https%3A%2F%2Fnbviewer.jupyter.org%2Fgithub%2Fvaexio%2Fvaex-examples%2Fblob%2Fmaster%2Fmedium-nyc-taxi-data-eda%2Fvaex-taxi-article.ipynb"|27:"12""],[20,"了解如何实现。","27:"12""],[20," ","7:3"],[20,"有了 Vaex,你可以在短短几秒内遍历超过 10 亿行数据,计算各种统计、聚合并产出信息图表,这一切都能在你的笔记本电脑上完成。它","27:"12""],[20,"免费且开源","0:"%231458d4"|16:"https%3A%2F%2Fgithub.com%2Fvaexio%2Fvaex"|27:"12""],[20,",你可以尝试一下!","27:"12""],[20," ","7:3"],[20,"数据科学快乐!","27:"12""],[20," ","7:3"],[20,"Vaex 官方网站:","27:"12""],[20," https://vaex.io/ ","0:"%231458d4"|16:"https%3A%2F%2Fvaex.io%2F"|27:"12""],[20,",目前官方团队提供 1 小时免费咨询支持。","27:"12""]]" style="font-size: 15px; font-family: 楷体, 楷体_GB2312, SimKai; letter-spacing: 0.5px; color: rgb(51, 51, 51); text-align: right; widows: 1;">上次送书,感觉与Pandas非常相似。","27:"12""],[20," ","27:"12"|bullet-id:"yB7q"|bullet:"circle""],[20,"精益:分成多个包","27:"12""],[20," ","27:"12"|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-core:数据集和核心算法,将numpy数组作为输入列。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-hdf5:将内存映射的numpy数组提供给数据集。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-arrow:"],[20,"箭头","0:"%230366d6"|16:"https%3A%2F%2Farrow.apache.org%2F""],[20,"支持跨语言数据共享。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-viz:基于matplotlib的可视化。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-jupyter:基于Jupyter小部件/ ipywidgets,bqplot,ipyvolume和ipyleaflet的交互式可视化。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-astro:与天文学有关的转换和FITS文件支持。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-server:提供服务器以远程访问数据集。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-distributed:(概念证明)将多个服务器/群集组合到单个数据集中以进行分布式计算。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-qt:使用Qt GUI编写的程序。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex:安装上述所有程序的meta包。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-ml:具有自动流水线的"],[20,"机器学习","0:"%230366d6"|16:"http%3A%2F%2Fdocs.vaex.io%2Fen%2Flatest%2Fml.html""],[20,"。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"Jupyter集成:vaex-jupyter将在Jupyter笔记本和Jupyter实验室中为您提供交互式可视化和选择。","27:"12""],[20," ","27:"12"|bullet-id:"yB7q"|bullet:"circle""],[20," ","7:3"],[20,"我希望这篇文章是对","27:"12""],[20," Vaex ","0:"%231458d4"|16:"https%3A%2F%2Fgithub.com%2Fvaexio%2Fvaex"|27:"12""],[20,"一个有用的介绍,它会帮你缓解可能面临的一些“麻烦数据”的问题,至少在涉及表数据集时是这样的。如果你对探索本文中用到的数据集感兴趣,可以直接在 S3 中配合 Vaex 使用它,请参阅完整的","27:"12""],[20," Jupyter notebook ","0:"%231458d4"|16:"https%3A%2F%2Fnbviewer.jupyter.org%2Fgithub%2Fvaexio%2Fvaex-examples%2Fblob%2Fmaster%2Fmedium-nyc-taxi-data-eda%2Fvaex-taxi-article.ipynb"|27:"12""],[20,"了解如何实现。","27:"12""],[20," ","7:3"],[20,"有了 Vaex,你可以在短短几秒内遍历超过 10 亿行数据,计算各种统计、聚合并产出信息图表,这一切都能在你的笔记本电脑上完成。它","27:"12""],[20,"免费且开源","0:"%231458d4"|16:"https%3A%2F%2Fgithub.com%2Fvaexio%2Fvaex"|27:"12""],[20,",你可以尝试一下!","27:"12""],[20," ","7:3"],[20,"数据科学快乐!","27:"12""],[20," ","7:3"],[20,"Vaex 官方网站:","27:"12""],[20," https://vaex.io/ ","0:"%231458d4"|16:"https%3A%2F%2Fvaex.io%2F"|27:"12""],[20,",目前官方团队提供 1 小时免费咨询支持。","27:"12""]]" style="font-size: 15px; font-family: 楷体, 楷体_GB2312, SimKai; letter-spacing: 0.5px; color: rgb(51, 51, 51); text-align: right; widows: 1;">(点击查看 ,感觉与Pandas非常相似。","27:"12""],[20," ","27:"12"|bullet-id:"yB7q"|bullet:"circle""],[20,"精益:分成多个包","27:"12""],[20," ","27:"12"|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-core:数据集和核心算法,将numpy数组作为输入列。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-hdf5:将内存映射的numpy数组提供给数据集。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-arrow:"],[20,"箭头","0:"%230366d6"|16:"https%3A%2F%2Farrow.apache.org%2F""],[20,"支持跨语言数据共享。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-viz:基于matplotlib的可视化。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-jupyter:基于Jupyter小部件/ ipywidgets,bqplot,ipyvolume和ipyleaflet的交互式可视化。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-astro:与天文学有关的转换和FITS文件支持。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-server:提供服务器以远程访问数据集。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-distributed:(概念证明)将多个服务器/群集组合到单个数据集中以进行分布式计算。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-qt:使用Qt GUI编写的程序。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex:安装上述所有程序的meta包。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"vaex-ml:具有自动流水线的"],[20,"机器学习","0:"%230366d6"|16:"http%3A%2F%2Fdocs.vaex.io%2Fen%2Flatest%2Fml.html""],[20,"。"],[20," ","33:1|bullet-id:"yB7q"|bullet:"circle""],[20,"Jupyter集成:vaex-jupyter将在Jupyter笔记本和Jupyter实验室中为您提供交互式可视化和选择。","27:"12""],[20," ","27:"12"|bullet-id:"yB7q"|bullet:"circle""],[20," ","7:3"],[20,"我希望这篇文章是对","27:"12""],[20," Vaex ","0:"%231458d4"|16:"https%3A%2F%2Fgithub.com%2Fvaexio%2Fvaex"|27:"12""],[20,"一个有用的介绍,它会帮你缓解可能面临的一些“麻烦数据”的问题,至少在涉及表数据集时是这样的。如果你对探索本文中用到的数据集感兴趣,可以直接在 S3 中配合 Vaex 使用它,请参阅完整的","27:"12""],[20," Jupyter notebook ","0:"%231458d4"|16:"https%3A%2F%2Fnbviewer.jupyter.org%2Fgithub%2Fvaexio%2Fvaex-examples%2Fblob%2Fmaster%2Fmedium-nyc-taxi-data-eda%2Fvaex-taxi-article.ipynb"|27:"12""],[20,"了解如何实现。","27:"12""],[20," ","7:3"],[20,"有了 Vaex,你可以在短短几秒内遍历超过 10 亿行数据,计算各种统计、聚合并产出信息图表,这一切都能在你的笔记本电脑上完成。它","27:"12""],[20,"免费且开源","0:"%231458d4"|16:"https%3A%2F%2Fgithub.com%2Fvaexio%2Fvaex"|27:"12""],[20,",你可以尝试一下!","27:"12""],[20," ","7:3"],[20,"数据科学快乐!","27:"12""],[20," ","7:3"],[20,"Vaex 官方网站:","27:"12""],[20," https://vaex.io/ ","0:"%231458d4"|16:"https%3A%2F%2Fvaex.io%2F"|27:"12""],[20,",目前官方团队提供 1 小时免费咨询支持。","27:"12""]]" style="font-size: 15px; font-family: 楷体, 楷体_GB2312, SimKai; letter-spacing: 0.5px; color: rgb(51, 51, 51); text-align: right; widows: 1;">)中奖小伙伴如下


喜欢就点击“在看”吧!

Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/99020
 
584 次点击