社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  机器学习算法

机器学习如何提高搜索新粒子的能力

集智俱乐部 • 6 年前 • 639 次点击  

今年4月,在LHC(大型强子对撞机)内部的一次碰撞中,发现了个别带电粒子(橙色线)和大粒子喷射(黄色锥体)。 |  ATLAS


导语

在寻找新粒子时,传统的搜索算法总是需要物理学家事先假设出粒子的表现,机器学习算法则为此提供了新的思路。


编译:集智俱乐部翻译组

来源:Quantamagazine

原题:How Artificial Intelligence Can Supercharge the Search for New Particles


在大型强子对撞机中,每秒会有十亿对质子撞击。有时,机器会干扰现实状况,在碰撞中产生一些前所未有的东西。由于这些事件本身是意外出现的,物理学家们并不清楚自己要寻找什么。


从数十亿次碰撞的数据里,筛选出方便管理的小数据量的过程中,他们担心,可能会无意间删除掉新理论的证据。纽约大学粒子物理学家,在CERN(欧洲核子研究中心)进行过ATLAS实验工作(粒子观测)的Kyle Cranmer讲道,“我们总是担心倒洗澡水的时候,把婴儿也一起倒了出去”。


面对需要减少数据量的挑战,从浩瀚无垠的寻常事件中,挖掘出新的物理现象,一些物理学家开始尝试一种称为“深度卷积神经网络”的机器学习技术。


在机器学习的原型用例中,通过学习大量的标签为“cat”和“dog”的图像,深度卷积神经网络能够掌握辨别猫和狗的能力。


但是,由于物理学家无法向机器输入他们从来没有见过的图像,对于寻找新粒子的问题,这种方法并不奏效。


因此,物理学家尝试让机器从已知的粒子开始,利用细化的信息(比如它们在总体上可能发生的频率),查找不常见的事件 ,这种技术被称为“弱监督学习”


我们用一个简单的二维平面例子,来说明无监督学习的特点。左边的图,横坐标的三个区间,分别表示三个不同质量箱的粒子;纵坐标表示粒子的数量。蓝线表示粒子的总数,其余四条线表示在不同神经网络中,各自的阈值和粒子的实际数量。中间的图将每个质量箱中粒子的位置展现在二维平面中(紫色表示背景,黄色表示信号)。右边的图中,黑色正方形是本示例模型的目标信号区域。尽管该平面中的粒子没有任何标签信息,无监督学习也能够用这些数据训练出一个分类器。 |  论文①图2


今年五月,在Arxiv.org上发表的一篇论文中,三个研究员提出,应用相关策略来拓展“撞击狩猎”实验(bump hunting),该策略就是发现希格斯玻色子的经典粒子狩猎技术。Ben Nachman是劳伦斯伯克利国家实验室的一名研究员,他说道,具体的思路是训练机器,寻找数据集中罕见的变化。


论文①题目:

CWoLa Hunting: Extending the Bump Hunt with Machine Learning

论文①地址:

https://arxiv.org/abs/1805.02664


我们可以在猫狗实验原理的基础上做一个游戏——从北美森林观测数据集中找出新的动物物种。 


假设任何一个新动物,都倾向于聚集在某个特定的地理区域(一个与围绕某个质量聚集的新粒子相对应的概念),算法可以通过系统地比较临近区域,挑出它们。如果不列颠哥伦比亚省刚好有113只驯鹿,华盛顿州有19只驯鹿(即使数据集中有数百万只松鼠),整个学习过程中都没有直接学习过驯鹿,该程序也可以区分出松鼠和驯鹿。


Tim Cohen是俄勒冈大学的一名理论粒子物理学家,同时,他也研究弱监督学习,他指出,“这不是魔术,但像魔术一样神奇”。


相比之下,粒子物理学中传统的搜索方法,通常要求研究员对新现象做出假设。


他们通过创建模型,描述一个新粒子会如何表现,例如,新的粒子可能会倾向于衰变成已知粒子的特定星座。只有在他们定义了他们要寻找的东西之后,他们才能设计出自定义搜索策略。这项任务通常要花费一个博士生至少一年的时间。


Nachman认为,在机器学习的帮助下,这个过程可以完成得更快,更彻底。


在无监督学习中,通过调整参数的值(图中测试因子分别为10%,5%,1%,和0),构建不同的分类器,可以实现网络性能的变化。以二维模型中的数据为例,训练结果如图所示。前两个例子,网络能够正确地找到信号区域,但也出现了过拟合现象。左下方例子中,网络在信号区域附近找到了正确的形状,性能没有损失,最后一个网络无法收敛到信号区域。 |  论文①图4


CWoLa算法 ,表示无监督学习(Classification Without Labels),可以搜索任意未知粒子的现有数据。未知粒子会衰变成相同类型的两个较轻的未知粒子,或两个相同或不同类型的已知粒子。


利用普通的搜索方法,LHC机构至少要花费20年时间才可能找到后者存在的可能性,目前对前者的搜索也没有任何结果。


但研究ATLAS项目的Nachman提出,CWoLa可以一次完成所有的这些工作。


论文②题目:

The unexplored landscape of two-body resonances

论文②地址:

https://arxiv.org/abs/1610.09392


其他实验粒子物理学家也一致认为,这是一个有价值的项目。


Kate Pachal是一名物理学家,她在ATLAS项目中寻找新的粒子碰撞,她说道,“我们已经观察了很多可预测的区域,对我们来说,下一步的方向是,观察那些我们没看过的角落。” 去年,她和几个同事一直在试图设计灵活的软件,来处理一系列粒子,但他们中没有人对机器学习有足够的了解。她说,“我想现在是时候试一试这个技术了”。


虽然当前的数据集不利于建模工作,但卷积神经网络有希望发现数据之间微妙的相关性。其他的机器学习技术已经成功地提高了LHC某些任务的效率,比如识别由底夸克粒子制成的“喷流”。


论文③题目:

Machine Learning AIgorithms for b-Jet Tagging at the ATLAS Experiment

论文③地址:

https://arxiv.org/abs/1711.08811


这项工作表明,物理学家们确实在错过一些信号。加利福尼亚大学欧文分校的粒子物理学家丹尼尔怀特森说:“物理学家们将信息留在桌面上。不过如果你已经在机器上花了100亿美元,你并不会想把信息留在桌面上。”


然而,机器学习充满了将手臂与哑铃(甚至更糟糕的事物)相混淆的程序的警示故事。


在LHC,实验性物理学家努力地想要忽视机器自身存在的小问题,但有人担心这种捷径最终会反应出这些问题。ATLAS的物理学家Till Eifert问道,“发现异常时,它是物理学的新突破呢,还是探测器发生了什么有趣的事情呢?”


翻译:尚奇奇

审校:刘培源

编辑:王怡蔺

原文地址:

https://www.quantamagazine.org/how-artificial-intelligence-can-supercharge-the-search-for-new-particles-20180723/


推荐阅读


图卷积神经网络(GCN)

人脸识别尺度技术

机器学习成功预测混沌

量子机器学习1.0时代

机器学习 | 傅渥成

加入集智,一起复杂!


推荐课程


课程地址:https://campus.swarma.org/gcou=10337





集智QQ群|292641157

商务合作及投稿转载|swarma@swarma.org

◆ ◆ 

搜索公众号:集智俱乐部


加入“没有围墙的研究所”

让苹果砸得更猛烈些吧!



今天看啥 - 高品质阅读平台
本文地址:http://www.jintiankansha.me/t/hYAnKimksY
Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/22371
 
639 次点击