近年来,机器学习等新最新技术层出不穷,如何跟踪最新的热点以及最新资源,作者Robbie Allen列出了一系列相关资源教程列表,包含四个主题:机器学习,自然语言处理,Python和数学,建议大家收藏学习!
由于链接很多,为大家准备了PDF版,方便学习
下载方式
方式一
公众号后天回复“20180802”
方式二
点击文末阅读原文
作者 | Robbie Allen
编译 | 专知
整理 | Sanglei, Shengsheng
添加微信:MLAPython
(姓名-单位-方向)
即可加入机器学习交流群
Over 200 of the Best Machine Learning, NLP, and Python Tutorials
— 2018 Edition
去年我写了一份相当受欢迎的博文(在Medium上有16万阅读量,相关资源1),列出了我在深入研究大量机器学习资源时发现的最佳教程。十三个月后,现在有许多关于传统机器学习概念的新教程大量涌现以及过去一年中出现的新技术。围绕机器学习持续增加的大量内容有着惊人的数量。
本文包含了迄今为止我发现的最好的一些教程内容。它绝不是网上每个ML相关教程的简单详尽列表(这个工作量无疑是十分巨大而又枯燥重复的),而是经过详细筛选后的结果。我的目标就是将我在机器学习和自然语言处理领域各个方面找到的我认为最好的教程整理出来。
在教程中,为了能够更好的让读者理解其中的概念,我将避免罗列书中每章的详细内容,而是总结一些概念性的介绍内容。为什么不直接去买本书?当你想要对某些特定的主题或者不同方面进行了初步了解时,我相信这些教程对你可能帮助更大。
本文中我将分四个主题进行整理: 机器学习,自然语言处理,Python和数学。在每个主题中我将包含一个例子和多个资源。当然我不可能完全覆盖所有的主题啦。
如果你发现我在这里遗漏了好的教程资源,请联系告诉我。为了避免资源重复罗列,我在每个主题下只列出了5、6个教程。下面的每个链接都应该链接了和其他链接不同的资源,也会通过不同的方式(例如幻灯片代码段)或者不同的角度呈现出这些内容。
相关资源
作者Robbie Allen是以为科技作者和创业者、并自学AI并成为博士生。曾整理许多广为流传的机器学习相关资源。
1. 2017版教程资源 Over 150 ofthe Best Machine Learning, NLP, and Python Tutorials I’ve Found(150多个最好的与机器学习,自然语言处理和Python相关的教程)
2. My Curated List of AI and Machine LearningResources from Around the Web( 终极收藏AI领域你不能不关注的大牛、机构、课程、会议、图书)
3. Cheat Sheet of Machine Learningand Python (and Math) Cheat Sheets
(值得收藏的27 个机器学习的小抄)
目录
1.机器学习
1.1 激活函数与损失函数
1.2 偏差(bias)
1.3 感知机(perceptron)
1.4 回归(Regression)
1.5 梯度下降(Gradient Descent)
1.6 生成学习(Generative Learning)
1.7 支持向量机(Support Vector Machines)
1.8 反向传播(Backpropagation)
1.9 深度学习(Deep Learning)
1.10 优化与降维(Optimization and Dimensionality Reduction)
1.11 Long Short Term Memory (LSTM)
1.12 卷积神经网络 Convolutional Neural Networks (CNNs)
1.13 循环神经网络 Recurrent Neural Nets (RNNs)
1.14 强化学习 Reinforcement Learning
1.15 生产对抗模型 Generative Adversarial Networks (GANs)
1.16 多任务学习 Multi-task Learning
2. 自然语言处理 NLP
2.1 深度学习与自然语言处理 Deep Learning and NLP
2.2 词向量 Word Vectors
2.3 编解码模型 Encoder-Decoder
3. Python
3.1 样例 Examples
3.2 Scipy and numpy教程
3.3 scikit-learn教程
3.4 Tensorflow教程
3.5 PyTorch教程
4. 数学基础教程
4.1 线性代数
4.2 概率论
4.3 微积分
1. 机器学习
1.1 激活函数与损失函数
Comprehensive list ofactivation functions in neural networks with pros/cons(stats.stackexchange.com)
https://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
1.2 偏差(bias)
1.3 感知机(perceptron)
1.4 回归(Regression)
1.5 梯度下降(Gradient Descent)
1.6 生成学习(Generative Learning)
1.7 支持向量机(Support Vector Machines)
Linear classification: SupportVector Machine, Softmax (Stanford 231n)
http://cs231n.github.io/linear-classify/
1.8 反向传播(Backpropagation)
Can you give a visualexplanation for the back propagation algorithm for neural networks? (github.com/rasbt)
https://github.com/rasbt/python-machine-learning-book/blob/master/faq/visual-backpropagation.md
1.9 深度学习(Deep Learning)
What’s the Difference BetweenArtificial Intelligence, Machine Learning, and Deep Learning? (nvidia.com)
https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/
1.10 优化与降维(Optimization and Dimensionality Reduction)
1.11 Long Short Term Memory (LSTM)
1.12 卷积神经网络 Convolutional Neural Networks (CNNs)
1.13 循环神经网络 Recurrent Neural Nets (RNNs)
1.14 强化学习 Reinforcement Learning
1.15 生产对抗模型 Generative Adversarial Networks (GANs)
1.16 多任务学习 Multi-task Learning
2. 自然语言处理 NLP
2.1 深度学习与自然语言处理 Deep Learning and NLP
Deep Learning, NLP, andRepresentations (colah.github.io)
http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/
Embed, encode, attend, predict:The new deep learning formula for state-of-the-art NLPmodels (explosion.ai)
https://explosion.ai/blog/deep-learning-formula-nlp
2.2 词向量 Word Vectors
Word2Vec Tutorial—TheSkip-Gram Model, Negative Sampling(mccormickml.com)
http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
2.3 编解码模型 Encoder-Decoder
Machine Learning is Fun Part 5:Language Translation with Deep Learning and the Magic ofSequences (medium.com/@ageitgey)
https://medium.com/@ageitgey/machine-learning-is-fun-part-5-language-translation-with-deep-learning-and-the-magic-of-sequences-2ace0acca0aa
How to use an Encoder-DecoderLSTM to Echo Sequences of Random Integers(machinelearningmastery.com)
http://machinelearningmastery.com/how-to-use-an-encoder-decoder-lstm-to-echo-sequences-of-random-integers/
3. Python
An example machine learningnotebook (nbviewer.jupyter.org)
http://nbviewer.jupyter.org/github/rhiever/Data-Analysis-and-Machine-Learning-Projects/blob/master/example-data-science-notebook/Example%20Machine%20Learning%20Notebook.ipynb
3.1 样例 Examples
3.2 Scipy and numpy教程
3.3 scikit-learn教程
3.4 Tensorflow教程
3.5 PyTorch教程
4. 数学基础教程
4.1 线性代数
4.2 概率论
4.3 微积分
How To Understand Derivatives:The Quotient Rule, Exponents, and Logarithms (betterexplained.com)
https://betterexplained.com/articles/how-to-understand-derivatives-the-quotient-rule-exponents-and-logarithms/
How To Understand Derivatives:The Product, Power & Chain Rules(betterexplained.com)
https://betterexplained.com/articles/derivatives-product-power-chain/
原文链接:
https://medium.com/machine-learning-in-practice/over-200-of-the-best-machine-learning-nlp-and-python-tutorials-2018-edition-dd8cf53cb7dc