参考文献:(上下滑动查看更多)
[1] 中国医师协会肝癌专业委员会 . 肝细胞癌全程管理中国专家共识(2023 版)[J]. 中华消化外科杂志, 2023, 22(7):824-842.DOI: 10.3760/cma.j.cn115610-20230605-00261.
[2] Llovet JM, Kelley RK, Villanueva A, et al. Hepatocellular carcinoma[J]. Nat Rev Dis Primers, 2021, 7(1):6. DOI:10.1038/s41572-020-00240-3.
[3] Yin Y, Feng W, Chen J, et al. Immunosuppressive tumor microenvironment in the progression, metastasis, and therapy of hepatocellular carcinoma: from bench to bedside[J]. Exp Hematol Oncol, 2024, 13(1):72. DOI:10.1186/s40164-024-00539-x.
[4] Safri F, Nguyen R, Zerehpooshnesfchi S, et al. Heterogeneity of hepatocellular carcinoma: from mechanisms to clinical implications[J]. Cancer Gene Ther, 2024, 31(8):1105-1112.DOI:10.1038/s41417-024-00764-w.
[5] Lei ZQ, Hu X, Wu YQ, et al. The role and mechanism of the vascular endothelial niche in diseases: a review[J]. Front Physiol, 2022, 13:863265. DOI:10.3389/fphys.2022.863265.
[6] Lam K, Ma S. Noncellular components in the liver cancer stem cell niche: Biology and potential clinical implications[J].Hepatology, 2022, 78(3):991-1005. DOI:10.1002/hep.32629.
[7] 阳韬, 王潇, 蒋龙凤, 等 . 巨噬细胞的异质性在非酒精性脂肪性肝病和非酒精性脂肪性肝炎疾病进展中的作用[J].中华肝脏病杂志, 2023, 31(7):770-775. DOI:10.3760/cma.j.cn501113-20220428-00223.
[8] Nobs SP, Kopf M. Tissue-resident macrophages: guardians of organ homeostasis[J]. Trends Immunol, 2021, 42(6):495-507.DOI:10.1016/j.it.2021.04.007.
[9] Watanabe S, Alexander M, Misharin AV, et al. The role of macrophages in the resolution of inflammation[J]. J Clin Invest, 2019, 129(7):2619-2628. DOI:10.1172/jci124615.
[10] Guerriero JL. Macrophages: the road less traveled, changing anticancer therapy[J]. Trends Mol Med, 2018, 24(5):472-489.DOI:10.1016/j.molmed.2018.03.006.
[11] Orecchioni M, Ghosheh Y, Pramod AB, et al. Macrophage polarization: different gene signatures in M1(LPS+) vs. classically and M2(LPS-) vs. alternatively activated macrophages[J]. Front Immunol, 2019, 10:1084. DOI:10.3389/fimmu.2019.01084.
[12] Caronni N, La Terza F, Vittoria FM, et al. IL-1β +macrophages fuel pathogenic inflammation in pancreaticcancer[J]. Nature, 2023, 623(7986):415-422. DOI: 10.1038/s41586-023-06685-2.
[13] Premont RT, Claing A, Vitale N, et al. β2-adrenergic receptor regulation by GIT1, a G protein-coupled receptor kinase-associated ADP ribosylation factor GTPase-activating protein[J]. Proc Natl Acad Sci U S A, 1998, 95(24):14082-14087. DOI:10.1073/pnas.95.24.14082.
[14] Wang GF, Bai XS, Jiang GQ, et al. GIT1 overexpression promotes epithelial-mesenchymal transition and predicts poor prognosis in hepatocellular carcinoma[J]. Bioengineered, 2020,12(1):30-43. DOI:10.1080/21655979.2020.1855914.
[15] Hoefen RJ, Berk BC. The multifunctional GIT family of proteins [J]. J Cell Sci, 2006, 119(8):1469-1475. DOI:10.1242/jcs.02925.
[16] Zhang S, Miyakawa A, Wickström M, et al. GIT1 protects against breast cancer growth through negative regulation of Notch[J]. Nat Commun, 2022, 13(1):1537. DOI:10.1038/s41467-022-28631-y.
[17] Asmar AJ, Abrams SR, Hsin J, et al. A ubiquitin-based effector-to-inhibitor switch coordinates early brain, craniofacial,and skin development[J]. Nat Commun, 2023, 14(1):4499.DOI:10.1038/s41467-023-40223-y.
[18] Won HJ, Mah W, Kim EJ, et al. GIT1 is associated with ADHD in humans and ADHD-like behaviors in mice[J]. Nat Med, 2011, 17(5):566-572. DOI:10.1038/nm.2330.
[19] Fiuza M, González-González I, Pérez-Otaño I. GluN3A expression restricts spine maturation via inhibition of GIT1/Rac1 signaling[J]. Proc Natl Acad Sci U S A, 2013, 110(51):20807-20812. DOI:10.1073/pnas.1312211110.
[20] Pang J, Xu X, Wang X, et al. G-protein-coupled receptor kinase interacting protein-1 mediates intima formation by regulating vascular smooth muscle proliferation, apoptosis, and migration[J]. Arterioscler Thromb Vasc Biol, 2013, 33(5):999-1005. DOI:10.1161/atvbaha.112.300966.
[21] Liu H, Yi J, Zhang CX, et al. Macrophage GIT1 promotes oligodendrocyte precursor cell differentiation and remyelination after spinal cord injury[J]. Glia, 2024, 72(9):1674-1692. DOI:10.1002/glia.24577.
[22] Zhou J, Tu DY, Peng R, et al. RNF173 suppresses RAF/MEK/ERK signaling to regulate invasion and metastasis via GRB2 ubiquitination in Hepatocellular Carcinoma[J]. Cell Commun Signal, 2023, 21(1):224. DOI:10.1186/s12964-023-01241-x.
[23] Li JM, Zhang Z, Guo K, et al. Identification of a key glioblastoma candidate gene, FUBP3, based on weighted gene co-expression network analysis[J]. BMC Neurol, 2022, 22(1):139. DOI:10.1186/s12883-022-02661-x.
[24] Peng R, Cao J, Su BB, et al. Down-regulation of circPTTG1IP induces hepatocellular carcinoma development via miR-16-5p/RNF125/JAK1 axis[J]. Cancer lett, 2022, 543:215778. DOI:10.1016/j.canlet.2022.215778.
[25] Cao J, Su BB, Zhang C, et al. Degradation of PARP1 by MARCHF3 in tumor cells triggers cCAS-STING activation in dendritic cells to regulate antitumor immunity in hepatocellular carcinoma[J]. J Immunother Cancer, 2024, 12(11):e010157.DOI:10.1136/jitc-2024-010157.
[26] Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024[J]. CA Cancer J Clin, 2024, 74(1):12-49. DOI:10.3322/caac.21820.
[27] Gu J, Peng RK, Guo CL, et al. Construction of a synthetic methodology-based library and its application in identifying a GIT/PIX protein-protein interaction inhibitor[J]. Nat Commun,2022, 13(1):7176. DOI:10.1038/s41467-022-34598-7.
[28] Xu R, Xu R, Wang Y, et al. G-protein-coupled receptor kinase-interacting protein 1 (GIT1) promotes head and neck squamous cell carcinoma metastases via activating the PI3K/AKT/mTOR signal pathway[J]. Comput Math Methods Med,2022, 2022:1-9. DOI:10.1155/2022/6881932.
[29] Chang JS, Hua KT, Kuo ML, et al. GIT1 regulates lung cancer metastasis through modulating Rac1/Cdc42 activity and acts as an independent prognostic factor in human non-small cell lung cancer[J]. FASEB J, 2015, 29(S1):54.7. DOI: 10.1096/fasebj.29.1_supplement.54.7.
[30] Chen XK, Liu X, Du SD. Unveiling the role of tumor-infiltrating T cells and immunotherapy in hepatocellular carcinoma: a comprehensive review[J]. Cancers (Basel), 2023, 15(20):5046. DOI:10.3390/cancers15205046.
[31] Langhans B, Nischalke HD, Krämer B, et al. Role of regulatory T cells and checkpoint inhibition in hepatocellular carcinoma[J]. Cancer Immunol Immunother, 2019, 68(12):2055-2066. DOI:10.1007/s00262-019-02427-4.
[32] Jeng LB, Liao LY, Shih FY, et al. Dendritic-cell-vaccine-based immunotherapy for hepatocellular carcinoma: clinical trials and recent preclinical studies[J]. Cancers (Basel), 2022, 14(18):4380. DOI:10.3390/cancers14184380.
[33] Geh D, Leslie J, Rumney R, et al. Neutrophils as potential therapeutic targets in hepatocellular carcinoma[J]. Nat Rev Gastroenterol Hepatol, 2022, 19(4):257-273. DOI:10.1038/s41575-021-00568-5.
[34] Lu YJ, Sun QK, Guan QF, et al. The XOR-IDH3α axis controls macrophage polarization in hepatocellular carcinoma[J]. J Hepatol, 2023, 79(5):1172-1184. DOI:10.1016/j.jhep.2023.06.022.
[35] Yi M, Li TY, Niu MK, et al. Targeting cytokine and chemokine signaling pathways for cancer therapy[J]. Signal Transduct Target Ther, 2024, 9(1):176. DOI:10.1038/s41392-024-01868-3.