[1] Zhang F, Zhou B, Liu L, et al. Measuring human perceptions of a large-scale urban region using machine learning[J]. Landscape and Urban Planning, 2018, 180: 148-160.
[2] Yao Y, Liang Z, Yuan Z, et al. A human-machine adversarial scoring framework for urban perception assessment using street-view images[J]. International Journal of Geographical Information Science, 2019, 33(12): 2363-2384.
[3] Biljecki F, Ito K. Street view imagery in urban analytics and GIS: A review[J]. Landscape and Urban Planning, 2021, 215: 104217.
[4] 徐磊青,孟若希,黄舒晴,陈筝.疗愈导向的街道设计:基于VR实验的探索[J].国际城市规划,2019,34(01):38-45.
[5] Xu F, Jin A, Chen X, et al. New Data, Integrated Methods and Multiple Applications: A Review of Urban Studies based on Street View Images[C]//2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. IEEE, 2021: 6532-6535.
[6] 崔成,任红艳,赵璐等.基于街景影像多特征融合的广州市越秀区街道空间品质评估[J].地球信息科学学报,2020,22(06):1330-1338
[7] 郑屹,杨俊宴.基于大规模街景图片人工智能分析的精细化城市修补方法研究[J].中国园林,2020,36(08):73-77.DOI:10.19775/j.cla.2020.08.0073.
[8] 韩君伟,董靓.基于心理物理方法的街道景观视觉评价研究[J].中国园林,2015,31(05):116-119.
[9] 黄竞雄,梁嘉祺,杨盟盛等.基于街景图像的旅游地街道空间视觉品质评价方法[J/OL].地球信息科学学报:1-15[2023-05-11].http://kns.cnki.net/kcms/detail/11.5809.p.20221219.0958.002.html.
[10] 叶宇,张昭希,张啸虎等.人本尺度的街道空间品质测度——结合街景数据和新分析技术的大规模、高精度评价框架[J].国际城市规划,2019,34(01):18-27.
[11] 戴智妹,华晨.基于街景的街道空间品质测度方法完善及示例研究[J].规划师,2019,35(09):57-63.
[12] 胡昂,戴维维,郭仲薇等.城市生活型街道空间视觉品质的大规模测度[J].华侨大学学报(自然科学版),2021,42(04):483-493.
[13] 余付蓉. 基于腾讯街景的长三角主要城市林荫道景观视觉评价[D].上海师范大学,2019.
[14] 李鑫,吴丹子,李倞等.基于深度学习的城市滨河绿道景观视觉感知评价研究[J].北京林业大学学报,2021,43(12):93-104.
[15] 董贺轩,高翔.街道植物空间对步行愉悦度的影响[J].风景园林,2023,30(01):54-62.
[16] [1]方智果,刘聪,肖雨,等.基于深度学习和多源数据的街道美感评价与影响因素分析——以上海为例[J].国际城市规划,2023,38(06):48-58.DOI:10.19830/j.upi.2022.371.
[17] 甘伟,胡雯,周钰.历史文化街区的街景天际线分形特征研究——以凤凰古城为例[J].华中建筑,2020,38(05):125-129.DOI:10.13942/j.cnki.hzjz.2020.05.028.
[18] 马兰,张华,郭梓峰.以分形维数测算建筑几何图形的视觉复杂度[J].计算机辅助设计与图形学学报,2019,31(10):1809-1816.
[19] Ho T K. Random decision forests[C]//Proceedings of 3rd international conference on document analysis and recognition. IEEE, 1995, 1: 278-282.
[20] 郭珮珺. 基于社会感知数据的行人交通事故建模与影响因素分析[D]. 华东师范大学, 2021.
[21] Zhou L, Dang X, Sun Q, et al. Multi-scenario simulation of urban land change in Shanghai by random forest and CA-Markov model[J]. Sustainable Cities and Society, 2020, 55: 1-10.
[22] Chen T, Guestrin C. Xgboost: A scalable tree boosting system[C]//Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. 2016: 785-794.