社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  机器学习算法

量化前沿速递:机器学习[20250330]

量化前沿速递 • 5 天前 • 10 次点击  

机器翻译,仅供参考!可使用微信自带翻译功能自行翻译

更多文献获取请关注公众号:量化前沿速递

获取文献链接/翻译/pdf/文章解析请加入知识星球“量化前沿速递

文献汇总

[1] AIDetection

帮助检测

来源:ARXIV_20250324

[2] Universal approximation property of neural stochastic differential equations

神经随机微分方程的普遍逼近性质

来源:ARXIV_20250324

[3] Forecasting U.S. equity market volatility with attention and sentiment to the economy

根据对经济的关注和情绪预测美国股市波动

来源:ARXIV_20250326

[4] Demand Estimation with Text and Image Data

基于文本和图像数据的需求估计

来源:ARXIV_20250327

[5] A Causal Perspective of Stock Prediction Models

股票预测模型的因果视角

来源:ARXIV_20250328

[1] AIDetection

标题:帮助检测

作者:Andy Buschmann

来源:ARXIV_20250324

Abstract : This paper introduces a simple JavaScript based web application designed to assist educators in detecting AI generated content in student essays and written assignments. Unlike existing AI detection tools that rely on obfuscated machine learning models, this http URL employs a heuristic based approach to identify common syntactic traces left by generative AI models, such as ChatGPT, Claude, Grok, DeepSeek, Gemini,......(摘要翻译及全文见知识星球)

Keywords : 

[2] Universal approximation property of neural stochastic differential equations

标题:神经随机微分方程的普遍逼近性质

作者:Anna P. Kwossek, David J. Prömel, Josef Teichmann

来源:ARXIV_20250324

Abstract : We identify various classes of neural networks that are able to approximate continuous functions locally uniformly subject to fixed global linear growth constraints. For such neural networks the associated neural stochastic differential equations can approximate general stochastic differential equations, both of It  diffusion type, arbitrarily well. Moreover, quantitative error estimates are derived for stochastic differential equations with sufficiently regular coefficients.......(摘要翻译及全文见知识星球)

Keywords : 

[3] Forecasting U.S. equity market volatility with attention and sentiment to the economy

标题:根据对经济的关注和情绪预测美国股市波动

作者:Martina Halousková, Štefan Lyócsa

来源:ARXIV_20250326

Abstract : Macroeconomic variables are known to significantly impact equity markets, but their predictive power for price fluctuations has been underexplored due to challenges such as infrequency and variability in timing of announcements, changing market expectations, and the gradual pricing in of news. To address these concerns, we estimate the public s attention and sentiment towards ten scheduled macroeconomic variables using social media,......(摘要翻译及全文见知识星球)

Keywords : 

[4] Demand Estimation with Text and Image Data

标题:基于文本和图像数据的需求估计

作者:Giovanni Compiani, Ilya Morozov, Stephan Seiler

来源:ARXIV_20250327

Abstract : We propose a demand estimation method that leverages unstructured text and image data to infer substitution patterns. Using pre trained deep learning models, we extract embeddings from product images and textual descriptions and incorporate them into a random coefficients logit model. This approach enables researchers to estimate demand even when they lack data on product attributes or when consumers value hard......(摘要翻译及全文见知识星球)

Keywords : 

[5] A Causal Perspective of Stock Prediction Models

标题:股票预测模型的因果视角

作者:Songci Xu, Qiangqiang Cheng, Chi-Guhn Lee

来源:ARXIV_20250328

Abstract : In the realm of stock prediction, machine learning models encounter considerable obstacles due to the inherent low signal to noise ratio and the nonstationary nature of financial markets. These challenges often result in spurious correlations and unstable predictive relationships, leading to poor performance of models when applied to out of sample (OOS) domains. To address these issues, we investigate  textit......(摘要翻译及全文见知识星球)

Keywords : 


Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/180591
 
10 次点击