Py学习  »  Python

Python爬虫超详细讲解(零基础入门,老年人都看的懂)

小小的python学习社 • 1 月前 • 120 次点击  

讲解我们的爬虫之前,先概述关于爬虫的简单概念(毕竟是零基础教程)

想象一下,如果你是一个侦探,那么网络爬虫就是你的得力助手,悄无声息地在互联网的各个角落搜集线索。网络爬虫,又称网页蜘蛛或网络机器人,是一种能够模拟浏览器发送网络请求,接收响应,并按照一定规则自动抓取互联网信息的程序。

网络爬虫的定义是什么?

网络爬虫(又被称为网页蜘蛛,网络机器人)就是模拟浏览器发送网络请求,接收请求响应,一种按照一定的规则,自动地抓取互联网信息的程序。
原则上,只要是浏览器(客户端)能做的事情,爬虫都能够做。


网络爬虫在我们的生活中扮演怎样的角色?

在数字化时代,信息如同潮水般汹涌而来。过去,我们可能依赖书籍、报纸或电视来获取信息,但这些渠道的信息量有限,而且筛选过的信息未必能满足我们的需求。如今,互联网为我们提供了海量的信息,但同时也带来了“信息过载”的问题。如何在浩如烟海的数据中找到我们真正需要的信息呢?

答案就是网络爬虫。它可以帮助我们自动化地搜集和分析信息,无论是在商业研究、市场分析、还是个人学习等方面,都有着广泛的应用。比如,商家可以利用爬虫分析竞争对手的营销策略,投资者可以用它来跟踪市场动态,学者可以收集数据进行学术研究。

在如此海量的信息碎片中,我们如何获取对自己有用的信息呢?

毫无疑问是通过网络爬虫进行分析筛选!

通过某项技术将相关的内容收集起来,再分析筛选才能得到我们真正需要的信息。

这个信息收集分析整合的工作,可应用的范畴非常的广泛,无论是生活服务、出行旅行、金融投资、各类制造业的产品市场需求等等……都能够借助这个技术获取更精准有效的信息加以利用。

网络爬虫技术,虽说有个诡异的名字,本能第一反应是那种软软的蠕动的生物,但它却是一个可以在虚拟世界里,无往不前的利器


如何做好网络爬虫的准备工作?

当我们提到“Python爬虫”时,可能会让人误以为只有Python才能做爬虫。其实,这是一个误解。PHP、JAVA、C#、C++等编程语言也都可以编写爬虫程序。之所以Python在爬虫领域备受欢迎,是因为它的语法简洁易读,同时拥有丰富的第三方库和工具,如requests、BeautifulSoup等,这些都能极大地简化爬虫的编写过程。

但是,无论使用哪种编程语言,编写爬虫都需要一定的技术基础和对网络协议的理解。同时,也需要注意遵守网站的robots协议和法律法规,避免对网站造成不必要的负担或侵犯他人的权益。

总之,网络爬虫是我们在大数据时代中不可或缺的数据收集助手。它能够帮助我们快速、准确地获取所需信息,为我们的工作和生活带来便利。

首先我们需要下载python,我下载的是官方最新的版本 3.8.3

其次我们需要一个Python的代码编辑器,我用的是Pychram。

下载链接:https://www.jetbrains.com/pycharm/download/#section=windows

我们还需要一些库来支持爬虫的运行(有些库Python可能自带了)

# -*- codeing = utf-8 -*-
from bs4 import BeautifulSoup  #网页解析,获取数据
import re  #正则表达式,进行文字匹配
import urllib.request, urllib.error  #制定URL,获取网页数据
import xlwt  #进行excel操作
import sqlite3 #进行SQLite数据库操作

差不多就是这几个库了,良心的我已经在后面写好注释了。


爬虫运行过程中,不一定就只需要上面几个库,看你爬虫的一个具体写法了,反正需要库的话我们可以直接在setting里面安装)


爬虫项目讲解

我们要爬取的就是这个网站:https://movie.douban.com/top250

我们的爬取的内容是:电影详情链接,图片链接,影片中文名,影片外国名,评分,评价数,概况,相关信息

这边我已经爬取好了,将爬取内容存入xls表中,看一下效果图:


代码分析

先把代码放上来,然后我根据代码逐步解析:

# -*- codeing = utf-8 -*-
from bs4 import BeautifulSoup  # 网页解析,获取数据
import re   # 正则表达式,进行文字匹配`
import urllib.request, urllib.error  # 制定URL,获取网页数据
import xlwt  # 进行excel操作
#import sqlite3  # 进行SQLite数据库操作

findLink = re.compile(r'')  # 创建正则表达式对象,标售规则   影片详情链接的规则
findImgSrc = re.compile(r', re.S)
findTitle = re.compile(r'(.*)')
findRating = re.compile(r'(.*)')
findJudge = re.compile(r'(\d*)人评价')
findInq = re.compile(r'(.*)')
findBd = re.compile(r'

(.*?)

'
, re.S)


defmain():
    baseurl = "https://movie.douban.com/top250?start="#要爬取的网页链接
# 1.爬取网页
    datalist = getData(baseurl)
    savepath = "豆瓣电影Top250.xls"#当前目录新建XLS,存储进去
# dbpath = "movie.db"              #当前目录新建数据库,存储进去
# 3.保存数据
    saveData(datalist,savepath)      #2种存储方式可以只选择一种
# saveData2DB(datalist,dbpath)


# 爬取网页
defgetData(baseurl):
    datalist = []  #用来存储爬取的网页信息
for i inrange(010):  # 调用获取页面信息的函数,10次
        url = baseurl + str(i * 25)
        html = askURL(url)  # 保存获取到的网页源码
# 2.逐一解析数据
        soup = BeautifulSoup(html, "html.parser")
for item in soup.find_all('div', class_="item"):  # 查找符合要求的字符串
            data = []  # 保存一部电影所有信息
            item = str(item)
            link = re.findall(findLink, item)[0]  # 通过正则表达式查找
            data.append(link)
            imgSrc = re.findall(findImgSrc, item)[0]
            data.append(imgSrc)
            titles = re.findall(findTitle, item)
if (len(titles) == 2):
                ctitle = titles[0]
                data.append(ctitle)
                otitle = titles[1].replace("/""")  #消除转义字符
                data.append(otitle)
else:
                data.append(titles[0])
                data.append(' ')
            rating = re.findall(findRating, item)[0]
            data.append(rating)
            judgeNum = re.findall(findJudge, item)[0]
            data.append(judgeNum)
            inq = re.findall(findInq, item)
iflen(inq) != 0:
                inq = inq[0].replace("。""")
                data.append(inq)
else:
                data.append(" ")
            bd = re.findall(findBd, item)[0]
            bd = re.sub('
(\s+)?'
"", bd)
            bd = re.sub('/'"", bd)
            data.append(bd.strip())
            datalist.append(data)

return datalist


# 得到指定一个URL的网页内容
defaskURL(url):
    head = {  # 模拟浏览器头部信息,向豆瓣服务器发送消息
"User-Agent" "Mozilla / 5.0(Windows NT 10.0; Win64; x64) AppleWebKit / 537.36(KHTML, like Gecko) Chrome / 80.0.3987.122  Safari / 537.36"
    }
# 用户代理,表示告诉豆瓣服务器,我们是什么类型的机器、浏览器(本质上是告诉浏览器,我们可以接收什么水平的文件内容)

    request = urllib.request.Request(url, headers=head)
    html = ""
try:
        response = urllib.request.urlopen(request)
        html = response.read().decode("utf-8")
except urllib.error.URLError as e:
ifhasattr(e, "code"):
print(e.code)
ifhasattr(e, "reason"):
print(e.reason)
return html


# 保存数据到表格
defsaveData(datalist,savepath):
print("save.......")
    book = xlwt.Workbook(encoding="utf-8",style_compression=0#创建workbook对象
    sheet = book.add_sheet('豆瓣电影Top250', cell_overwrite_ok=True#创建工作表
    col = ("电影详情链接","图片链接","影片中文名","影片外国名","评分","评价数","概况","相关信息")
for i inrange(0,8):
        sheet.write(0,i,col[i])  #列名
for i inrange(0,250):
# print("第%d条" %(i+1))       #输出语句,用来测试
        data = datalist[i]
for j inrange(0,8):
            sheet.write(i+1,j,data[j])  #数据
    book.save(savepath) #保存

# def saveData2DB(datalist,dbpath):
#     init_db(dbpath)
#     conn = sqlite3.connect(dbpath)
#     cur = conn.cursor()
#     for data in datalist:
#             for index in range(len(data)):
#                 if index == 4 or index == 5:
#                     continue
#                 data[index] = '"'+data[index]+'"'
#             sql = '''
#                     insert into movie250(
#                     info_link,pic_link,cname,ename,score,rated,instroduction,info)
#                     values (%s)'''%",".join(data)
#             # print(sql)     #输出查询语句,用来测试
#             cur.execute(sql)
#             conn.commit()
#     cur.close
#     conn.close()


# def init_db(dbpath):
#     sql = '''
#         create table movie250(
#         id integer  primary  key autoincrement,
#         info_link text,
#         pic_link text,
#         cname varchar,
#         ename varchar ,
#         score numeric,
#         rated numeric,
#         instroduction text,
#         info text
#         )
#
#
#     '''  #创建数据表
#     conn = sqlite3.connect(dbpath)
#     cursor = conn.cursor()
#     cursor.execute(sql)
#     conn.commit()
#     conn.close()

# 保存数据到数据库



if __name__ == "__main__":  # 当程序执行时
# 调用函数
     main()
# init_db("movietest.db")
print("爬取完毕!")

下面我根据代码,从下到下给大家讲解分析一遍

-- codeing = utf-8 --,开头的这个是设置编码为utf-8 ,写在开头,防止乱码。

然后下面 import就是导入一些库,做做准备工作,(sqlite3这库我并没有用到所以我注释起来了)。

下面一些find开头的是正则表达式,是用来我们筛选信息的。(正则表达式用到 re 库,也可以不用正则表达式,不是必须的。)

大体流程分三步走:

  1. 爬取网页

  2. 逐一解析数据

  3. 保存网页

1.爬取网页

先分析流程1,爬取网页,baseurl 就是我们要爬虫的网页网址,往下走,调用了 getData(baseurl) ,我们来看 getData方法:

for i inrange(010):  # 调用获取页面信息的函数,10次
        url = baseurl + str(i * 25)

这段大家可能看不懂,其实是这样的:

因为电影评分Top250,每个页面只显示25个,所以我们需要访问页面10次,25*10=250。

baseurl = "https://movie.douban.com/top250?start="

我们只要在baseurl后面加上数字就会跳到相应页面,比如i=1时

https://movie.douban.com/top250?start=25

我放上超链接,大家可以点击看看会跳到哪个页面,毕竟实践出真知。

然后又调用了askURL来请求网页,这个方法是请求网页的主体方法,怕大家翻页麻烦,我再把代码复制一遍,让大家有个直观感受。

defaskURL(url):
    head = {  # 模拟浏览器头部信息,向豆瓣服务器发送消息
"User-Agent""Mozilla / 5.0(Windows NT 10.0; Win64; x64) AppleWebKit / 537.36(KHTML, like Gecko) Chrome / 80.0.3987.122  Safari / 537.36"
    }
# 用户代理,表示告诉豆瓣服务器,我们是什么类型的机器、浏览器(本质上是告诉浏览器,我们可以接收什么水平的文件内容)

    request = urllib.request.Request(url, headers=head)
    html = ""
try:
        response = urllib.request.urlopen(request)
        html = response.read().decode("utf-8")
except urllib.error.URLError as e:
ifhasattr(e, "code"):
print(e.code)
ifhasattr(e, "reason"):
print(e.reason)
return html

这个askURL就是用来向网页发送请求用的,那么这里就有老铁问了,为什么这里要写个head呢?

这是因为我们要是不写的话,访问某些网站的时候会被认出来爬虫,显示错误,错误代码 。


418

这是一个梗大家可以百度下,

418 I'm a teapot

The HTTP 418 I'm a teapot client error response code indicates that
the server refuses to brew coffee because it is a teapot. This error
is a reference to Hyper Text Coffee Pot Control Protocol which was an
April Fools' joke in 1998.

我是一个茶壶

所以我们需要 “装” ,装成我们就是一个浏览器,这样就不会被认出来,伪装一个身份。

来,我们继续往下走,

html = response.read().decode("utf-8")

这段就是我们读取网页的内容,设置编码为utf-8,目的就是为了防止乱码。访问成功后,来到了第二个流程:

2.逐一解析数据

解析数据这里我们用到了 BeautifulSoup(靓汤) 这个库,这个库是几乎是做爬虫必备的库,无论你是什么写法。

下面就开始查找符合我们要求的数据,用BeautifulSoup的方法以及 re 库的正则表达式去匹配:

findLink = re.compile(r'')  # 创建正则表达式对象,标售规则   影片详情链接的规则
findImgSrc = re.compile(r', re.S)
findTitle = re.compile(r'(.*)')
findRating = re.compile(r'(.*)')
findJudge = re.compile(r'(\d*)人评价')
findInq = re.compile(r'(.*)')
findBd = re.compile(r'

(.*?)

'
, re.S)

匹配到符合我们要求的数据,然后存进dataList, 所以 dataList 里就存放着我们需要的数据了。

最后一个流程:

3.保存数据

# 3.保存数据
saveData(datalist,savepath)      #2种存储方式可以只选择一种
# saveData2DB(datalist,dbpath)

保存数据可以选择保存到 xls 表, 需要(xlwt库支持)

也可以选择保存数据到 sqlite数据库, 需要(sqlite3库支持)

这里我选择保存到 xls 表 ,这也是为什么我注释了一大堆代码,注释的部分就是保存到 sqlite 数据库的代码,二者选一就行。

保存到 xls 的主体方法是 saveData (下面的saveData2DB方法是保存到sqlite数据库):

defsaveData(datalist,savepath):
print("save.......")
    book = xlwt.Workbook(encoding="utf-8",style_compression=0#创建workbook对象
    sheet = book.add_sheet('豆瓣电影Top250', cell_overwrite_ok=True#创建工作表
    col = ("电影详情链接","图片链接","影片中文名","影片外国名","评分","评价数","概况","相关信息")
for i inrange(0,8):
        sheet.write(0,i,col[i])  #列名
for i inrange(0,250):
# print("第%d条" %(i+1))       #输出语句,用来测试
        data = datalist[i]
for j inrange(0, 8):
            sheet.write(i+1,j,data[j])  #数据
    book.save(savepath) #保存

创建工作表,创列(会在当前目录下创建):

 sheet = book.add_sheet('豆瓣电影Top250', cell_overwrite_ok=True#创建工作表
 col = ("电影详情链接","图片链接","影片中文名","影片外国名","评分","评价数","概况","相关信息")

然后把 dataList里的数据一条条存进去就行。最后运作成功后,会在左侧生成这么一个文件:

打开之后看看是不是我们想要的结果:

成了,成了!

如果我们需要以数据库方式存储,可以先生成 xls 文件,再把 xls 文件导入数据库中,就可以啦

我也在不断的学习中,学到新东西第一时间会跟大家分享,大家可以动动小手,点波关注不迷路。


关于Python技术储备

学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!

整理出了一套系统的学习路线,这套资料涵盖了诸多学习内容:开发工具,基础视频教程,项目实战源码,51本电子书籍,100道练习题等。相信可以帮助大家在最短的时间内,能达到事半功倍效果,用来复习也是非常不错的。

👉Python学习路线汇总👈

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

👉Python学习视频合集👈

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

👉实战案例👈

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

资料获取方式:↓↓↓↓
1.关注下方公众号↓↓↓↓在后台发送:“python” 即可免费领取

Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/179319
 
120 次点击