社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  机器学习算法

图解深度学习 - 激活函数和损失函数

架构师带你玩转AI • 1 月前 • 109 次点击  

激活函数和损失函数在深度学习中扮演着至关重要的角色。通过选择合适的激活函数和损失函数,可以显著提高神经网络的表达能力和优化效果。

其中激活函数是神经网络中的非线性函数,用于在神经元之间引入非线性关系,从而使模型能够学习和表示复杂的数据模式,常见的激活函数有 Sigmoid、Tanh、ReLU 和 Leaky ReLU;损失函数则是评估模型预测值与真实值之间的差异,通过最小化损失函数来优化模型参数,常见的损失函数有 MSE和交叉熵损失(Cross-Entropy Loss)。

一、激活函数

激活函数(Activation Function)是什么在深度学习中, 激活函数是神经网络中的非线性函数,用于在神经元之间引入非线性关系,从而使模型能够学习和表示复杂的数据模式。
如果神经网络没有像Relu这样的激活函数(也叫非线性激活函数),神经网络每层就只包含两个线性运算,即点积与加法:output = dot(input, W) + b。
神经网络中的每一层若仅进行线性变换(仿射变换),则其假设空间受限,无法充分利用多层表示的优势。因为多个线性层堆叠后,其整体运算仍然是线性的,增加层数并不能扩展假设空间。为了获得更丰富的假设空间,需要引入非线性因素,即激活函数。
Sigmoid和Tanh是较早使用的激活函数,但存在梯度消失问题。ReLU及其变体(如Leaky ReLU、PReLU、ELU等)通过改进梯度消失问题,成为了当前隐藏层常用的激活函数。而softmax函数则专门用于多分类问题的输出层,将输出转换为概率分布。
  • Sigmoid:将输入值压缩到(0, 1)之间,常用于二分类问题的输出层。但存在梯度消失问题,且输出不以零为中心。

  • Tanh:将输入值压缩到(-1, 1)之间,输出均值为0,更适合隐藏层。但同样存在梯度消失问题。

  • ReLU:当输入大于0时,输出等于输入;当输入小于0时,输出为0。具有计算简单、梯度消失问题较轻的优点,是隐藏层常用的激活函数。但存在神经元死亡问题。

  • Leaky ReLU:解决了ReLU在输入小于0时梯度为0的问题,允许小的梯度流过。

  • Softmax:将输入向量中的每个元素映射到(0, 1)区间内,并且所有输出元素的和为1。用于多分类问题的输出层,将神经网络的输出转换为概率分布。

“一图 + 一句话”彻底搞懂 激活函数
激活函数是神经网络中的非线性组件,用于在神经元间引入非线性关系,使模型能捕捉复杂数据模式,其中ReLU及其变体常用于隐藏层,而Softmax则专用于多分类输出层。

二、损失函数

损失函数(Loss Function)是什么在深度学习中,损失函数则是评估模型预测值与真实值之间的差异,通过最小化损失函数来优化模型参数。

在深度学习中,通过计算损失值,可以直观地了解模型的预测性能,从而指导模型的优化方向。神经网络通常使用梯度下降等优化算法来调整模型参数。

损失函数为这些优化算法提供了明确的目标和方向。通过不断减小损失值,可以逐步优化模型参数,提高模型的预测性能。常见类型包括均方误差、交叉熵损失等,选择时需根据任务类型、数据分布和特定需求进行考虑。

  • 均方误差(MSE):用于回归问题,计算预测值与真实值之间差的平方的平均值。

  • 交叉熵损失:用于分类问题,衡量模型预测概率分布与真实概率分布之间的差异。包括二分类交叉熵损失和多类别交叉熵损失。

“一图 + 一句话”彻底搞懂损失函数。

损失函数是衡量模型预测值与真实值差异的函数,通过最小化损失函数优化模型参数,常见类型有均方误差(回归)和交叉熵损失(分类),选择时需根据任务需求。

Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/178250
 
109 次点击