在过去十年中,人们对机器学习的兴趣激增。几乎每天,我们都可以在各种各样的计算机科学课程、行业会议、华尔街日报等等看到有关机器学习的讨论。在所有关于机器学习的讨论中,许多人把机器学习能做的事情和他们希望机器学习做的事情混为一谈。从根本上讲,机器学习是使用算法从原始数据中提取信息,并在某种类型的模型中表示这些信息。我们使用这个模型来推断还没有建模的其他数据。
神经网络是机器学习的一种模型,它们至少有50年历史了。神经网络的基本单元是节点(node),基本上是受哺乳动物大脑中的生物神经元启发。神经元之间的连接也以生物的大脑为模型,这些连接随着时间的推移而发展的方式是为“训练”。
在20世纪80年代中期和90年代初期,许多重要的模型架构进步都是在神经网络中进行的。然而,为了获得良好性能所需的时间和数据越来越多,这极大的降低了研究人员的兴趣。在21世纪初期,计算能力呈指数级增长,研究人员看到了计算机技术的“寒武纪爆发”。作为该领域的一个重要竞争者——深度学习,因为计算能力的爆炸式增长,赢得了许多重要的机器学习竞赛。截至目前,这种趋势仍然没有减退;今天,我们看到机器学习的每个角落都提到了深度学习。
最近,我开始阅读有关该深度学习的学术论文。根据我的研究,以下是一些对该领域的发展产生巨大影响的出版物:
纽约大学基于梯度的学习应用于文档识别(1998),它将卷积神经网络引入机器学习世界。
多伦多大学的DeepBoltzmann Machines(2009),它为Boltzmann机器提供了一种新的学习算法,包含许多隐藏变量层。
斯坦福和谷歌使用大规模无监督学习构建高级功能(2012),解决了仅使用未标记数据构建高级,类特定功能检测器的问题。
Berkeley的DeCAF-一种用于通用视觉识别的深度卷积激活功能(2013),它发布了DeCAF,这是一种深度卷积激活功能的开源实现,以及所有相关的网络参数,使视觉研究人员能够进行深度实验跨越一系列视觉概念学习范例的表示。
DeepMind使用Deep ReinforcementLearning(2016)播放Atari,它提供了第一个深度学习模型,可以使用强化学习直接从高维感觉输入成功学习控制策略。
通过研究和学习论文,我学到了很多关于深度学习的丰富知识。在这里,我想分享AI工程师可以应用于机器学习问题的10种强大的深度学习方法。但首先,让我们来定义深度学习是什么。深度学习对于许多人来说是一个挑战,因为它的形式在过去十年中逐渐发生了改变。为了向各位更好的说明深层学习的地位,下图说明了人工智能,机器学习和深度学习之间关系的概念。