社区
教程
Wiki
注册
登录
创作新主题
社区所有版块导航
Python
python开源
Django
Python
DjangoApp
pycharm
DATA
docker
Elasticsearch
分享
问与答
闲聊
招聘
翻译
创业
分享发现
分享创造
求职
区块链
支付之战
aigc
aigc
chatgpt
WEB开发
linux
MongoDB
Redis
DATABASE
NGINX
其他Web框架
web工具
zookeeper
tornado
NoSql
Bootstrap
js
peewee
Git
bottle
IE
MQ
Jquery
机器学习
机器学习算法
Python88.com
反馈
公告
社区推广
产品
短视频
印度
印度
一周十大热门主题
【已复现】Ingress NGINX Controller 远程代码执行漏洞(CVE-2025-19...
用 GPT 把你的照片变成吉卜力卡通风格模型选 ChatGPT -20250326135006
2025必看AI干货!《大模型/AIGC/GPT-4/Transformer/DL/KG/NLP/C...
人工智能发展简史:从图灵的梦想到深度学习的崛起
几个被淘汰的Python库,请不要再用!
“AIGC第一股”,来自南京
材料人必备!Python+机器学习,零基础入门科研新风口!
ChatGPT现在能用GPT-4o直接生成超逼真图片了AI画图再-20250326061525
总结了 30 段极简 Python 代码
C# vs Python:AI时代编程语言的生死对决
关注
Py学习
»
机器学习算法
生物多样性研究新方法新技术 | 基于深度学习语义分割模型的草地植被盖度估算对比研究
环境科学研究
• 4 月前 • 117 次点击
点击蓝字,关注我们
基于深度学习语义分割模型的草地植被盖度估算对比研究
王永财
1, 2
,万华伟
1
,
高吉喜
1
,
孙海鹏
3
,
胡卓玮
2
,
张志如
1
1. 生态环境部卫星环境应用中心,北京 100094
2. 首都师范大学资源环境与旅游学院,北京 100048
3. 内蒙古自治区环境监测总站锡林郭勒分站,内蒙古 锡林浩特 026000
摘要
草地植被盖度是评估草地生态系统健康和管理效果的重要指标。
草地植被盖度常用经验目测或传统图像分类方法获得,存在植被盖度估算主观性较强、精度不够、模型泛化能力不足等问题。
本研究利用深度学习语义分割模型对草地植被图像进行分割,并基于分割结果估算草地植被盖度,在像素尺度比较3种深度学习语义分割模型(Unet++、DeepLabv3+、Segformer)和Canopeo模型以及经典机器学习模型随机森林(Random Forest)在草地植被分割任务上的性能,结果表明:①Unet++模型分割性能最优,其平均交并比(MIoU)达0.79,F1分数(F1-score)达0.87,明显优于其他模型;相比之下Random Forest模型的表现较差,其MIoU为0.47,F1-score为0.55。②在图像尺度草地植被盖度估算中,Unet++、DeepLabv3+和Segformer模型估算的草地植被盖度均与实测草地植被盖度较为一致,估算精度明显高于Canopeo模型和Random Forest模型,深度学习语义分割模型中Unet++模型估算的草地植被盖度精度最高,决定系数(
R
2
)达0.98,均方根误差(RMSE)低于3.8%,说明深度学习语义分割模型能够较为准确地估算草地植被盖度。③由于Unet++模型具有比其他模型更优的草地植被分割性能,因此将Unet++模型作为最终的草地植被盖度估算模型,并应用于荒漠草原、典型草原和草甸草原3个实验样地,模型可快速准确地获取样地的草地植被盖度。
研究显示,Unet++等深度学习语义分割模型在草地植被盖度估算中表现出较高的准确性和适用性,能为草地植被盖度估算提供高效可靠的工具。
Python社区是高质量的Python/Django开发社区
本文地址:
http://www.python88.com/topic/175579
117 次点击
登录后回复