#癌症治疗# 【哈佛团队开发类ChatGPT的AI病理模型,诊断19种类型癌症准确率近94%,为癌症诊疗提供新工具】
我们能否拥有一款类似 #ChatGPT# 的 AI 模型,通过识别和分析病理图像就可预测和诊断癌症呢?最近的一项科学进展有望让这一愿望成真。
美国#哈佛大学# 助理教授余坤兴团队与合作者基于机器学习,开发了一款临床组织病理学成像评估基础(CHIEF,Clinical Histopathology Imaging Evaluation Foundation)模型。
通过训练 1500 万张未标记的病理图像和 60530 张覆盖 19 个解剖部位的全切片图像(WSI,Whole Slide Image),该模型能够对 19 种不同类型的癌症进行诊断,检测准确率接近 94%。
此外,该技术还能够对多种癌症患者的存活率进行预测,并精确识别肿瘤周围的微环境特征,这些特征与患者对手术、化疗、放疗和免疫疗法等常规治疗方案的反应密切相关。
值得关注的是,该模型的性能超过了当下其他先进的深度学习方法高达 36.1%,为癌症诊断和预后预测提供了一个高效且强大的工具。
戳链接查看详情:网页链接
我们能否拥有一款类似 #ChatGPT# 的 AI 模型,通过识别和分析病理图像就可预测和诊断癌症呢?最近的一项科学进展有望让这一愿望成真。
美国#哈佛大学# 助理教授余坤兴团队与合作者基于机器学习,开发了一款临床组织病理学成像评估基础(CHIEF,Clinical Histopathology Imaging Evaluation Foundation)模型。
通过训练 1500 万张未标记的病理图像和 60530 张覆盖 19 个解剖部位的全切片图像(WSI,Whole Slide Image),该模型能够对 19 种不同类型的癌症进行诊断,检测准确率接近 94%。
此外,该技术还能够对多种癌症患者的存活率进行预测,并精确识别肿瘤周围的微环境特征,这些特征与患者对手术、化疗、放疗和免疫疗法等常规治疗方案的反应密切相关。
值得关注的是,该模型的性能超过了当下其他先进的深度学习方法高达 36.1%,为癌症诊断和预后预测提供了一个高效且强大的工具。
戳链接查看详情:网页链接