社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  Python

经验之谈 —— 数据处理与分析的6大Python库

小白玩转Python • 6 月前 • 192 次点击  

点击下方卡片,关注“小白玩转Python”公众号



Python是一种流行的高级编程语言。它拥有丰富的生态系统和庞大的社区。这个生态系统中有许多优秀的Python库。这些库提供了有用的工具,使开发变得更加容易。本文将介绍6个出色的Python库。这些库在不同领域都表现良好。它们对初学者和经验丰富的开发者都很有用。

CleverCSVCleverCSV是一个有用的Python库,用于处理CSV文件。它可以智能解析、修复错误和清理数据。它解决了常见的CSV文件问题。以下是一个简单的示例,展示如何使用CleverCSV修复CSV文件中的错误。
import clevercsv
with open('data.csv', 'r') as f: dialect = clevercsv.Sniffer().sniff(f.read()) f.seek(0) reader = clevercsv.reader(f, dialect) for row in reader: print(row)
data = [ ['Name', 'Age', 'City'], ['Alice', '25', 'New York'], ['Bob', '30', 'San Francisco']]
with open('output.csv', 'w', newline='') as f: writer = clevercsv.writer(f) writer.writerows(data)

SciencePlots
SciencePlots GitHub链接
SciencePlots是一个用于制作科学图表的Python工具。学术期刊通常有精美的图表。你可能想知道如何制作这样漂亮的图表。这难吗?许多Python绘图工具只关注数据,而不是风格。
SciencePlots填补了这一空白。它专为学术论文图表制作,就像科学和IEEE期刊中的图表一样。

Drawdata

Drawdata GitHub链接
Drawdata是一个在Jupyter Notebook中绘制数据集的Python库。它帮助你轻松地查看你的数据。这在机器学习中非常有用。使用Drawdata,你可以在Jupyter Notebook中制作不同的图表。这有助于你探索数据,进行预处理、特征选择和模型评估。

KnockKnockKnockKnock是一个方便的Python库。它会告诉你何时训练完成或者如果它崩溃了。使用几行代码就可以轻松设置不同类型的警报。以下是一个简单的示例。
from knockknock import email_sender
# Email configuration settingsemail_config = { "email_address": "your_email@example.com", "password": "your_email_password", "smtp_server": "smtp.example.com", "smtp_port": 587, "to_email": "receiver_email@example.com"}
@email_sender(**email_config)def train_model(): # Code for training the model pass
# Call the training functionif __name__ == "__main__": train_model()
在这个示例中,我们在train_model函数上使用了一个装饰器。它使用提供的电子邮件设置设置了电子邮件警报。当训练完成或者崩溃时,你将收到一封电子邮件。

multipledispatchMultipledispatch是一个Python库,用于方法重载。它允许你根据参数类型选择不同版本的函数。通常,Python函数是根据名称和参数数量来选择的。但是当参数数量相同但类型不同时,这种方法就不起作用了。Multipledispatch解决了这个问题。以下是一个示例。
from multipledispatch import dispatch
@dispatch(int, int)def add(x, y): return x + y
@dispatch(str, str) def add(x, y): return x + y
try: print(add(1, 2)) # Output: 3 print(add("Hello, ", "World!")) # Output: Hello, World!except Exception as e: print(f"An error occurred: {e}")
在这个示例中,我们定义了两个名为“add”的函数。一个接受两个整数,另一个接受两个字符串。@dispatch装饰器根据参数类型选择正确的函数。

pampyPampy是一个简单但功能强大的Python模式匹配库。它用于模式匹配和重构。在常规编码中,我们经常使用if-elif-else语句来处理不同的情况。Pampy提供了一种更清晰的方式来完成这项工作。以下是一个示例。
from pampy import match, _
def process_data(data): result = match(data, 0, "Zero", 1, "One", int, "Other integer", list, "List", str, lambda s: f"String: {s}", _, "Other" ) return result
# Test the function with different inputsprint(process_data(0)) # Output: Zeroprint(process_data(1)) # Output: Oneprint(process_data(42)) # Output: Other integerprint(process_data([1, 2, 3])) # Output: Listprint(process_data("Hello")) # Output: String: Helloprint(process_data(True)) # Output: Other
在这个示例中,我们定义了一个process_data函数。它处理不同类型的输入数据。我们使用Pampy的match函数来检查输入数据的模式,并相应地进行处理。
·  END  ·

🌟 想要变身计算机视觉小能手?快来「小白玩转Python」公众号!
回复Python视觉实战项目,解锁31个超有趣的视觉项目大礼包!🎁

本文仅供学习交流使用,如有侵权请联系作者删除

Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/173500
 
192 次点击