社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  机器学习算法

量化前沿速递:机器学习[20240728]

量化前沿速递 • 8 月前 • 214 次点击  
机器翻译,仅供参考!可使用微信自带翻译功能自行翻译

更多文献获取请关注公众号:量化前沿速递
获取文献链接/翻译/pdf请加入知识星球“量化前沿速递

文献汇总

[1] The Hybrid Forecast of S&P 500 Volatility ensembled from VIX, GARCH and LSTM models
基于VIX、GARCH和LSTM模型的标准普尔500指数波动率混合预测
来源:ARXIV_20240725
[2] Automated Market Making and Decentralized Finance
自动化做市和去中心化金融
来源:ARXIV_20240725
[3] Market Making with Exogenous Competition
外生竞争下的市场开拓
来源:ARXIV_20240725
[4] Well-Diversified Arbitrage Portfolios through Attentional Autoencoder
通过注意的自动编码器实现多样化的套利投资组合
来源:SSRN_20240725
[5] A neural network architecture for maximizing alpha in a market timing investment strategy
一种用于在市场时机投资策略中最大化阿尔法的神经网络架构
来源:SSRN_20240725

[1] The Hybrid Forecast of S&P 500 Volatility ensembled from VIX, GARCH and LSTM models

标题:基于VIX、GARCH和LSTM模型的标准普尔500指数波动率混合预测
作者:Natalia Roszyk, Robert Ślepaczuk
来源:ARXIV_20240725
Abstract : Predicting the S&P 500 index volatility is crucial for investors and financial analysts as it helps assess market risk and make informed investment decisions. Volatility represents the level of uncertainty or risk related to the size of changes in a security s value, making it an essential indicator for financial planning. This study explores four methods to improve the accuracy of......(摘要翻译及全文见知识星球)
Keywords :

[2] Automated Market Making and Decentralized Finance

标题:自动化做市和去中心化金融
作者:Marcello Monga
来源:ARXIV_20240725
Abstract : Automated market makers (AMMs) are a new type of trading venues which are revolutionising the way market participants interact. At present, the majority of AMMs are constant function market makers (CFMMs) where a deterministic trading function determines how markets are cleared. Within CFMMs, we focus on constant product market makers (CPMMs) which implements the concentrated liquidity (CL) feature. In this thesis......(摘要翻译及全文见知识星球)
Keywords :

[3] Market Making with Exogenous Competition

标题:外生竞争下的市场开拓
作者:Robert Boyce, Martin Herdegen, Leandro Sánchez-Betancourt
来源:ARXIV_20240725
Abstract : We study liquidity provision in the presence of exogenous competition. We consider a  reference market maker  who monitors her inventory and the aggregated inventory of the competing market makers. We assume that the competing market makers use a  rule of thumb  to determine their posted depths, depending linearly on their inventory. By contrast, the reference market maker......(摘要翻译及全文见知识星球)
Keywords :

[4] Well-Diversified Arbitrage Portfolios through Attentional Autoencoder

标题:通过注意的自动编码器实现多样化的套利投资组合
作者:Mishel Qyrana
来源:SSRN_20240725
Abstract : This paper contributes to the field of asset pricing theory by leveraging autoencoder neural networks to identify arbitrage opportunities. This research applies an autoencoder-based asset pricing model to 228 surviving S&P 500 stocks, aiming to generate systematically excess returns looking at those anomalies. The methodology compresses stock data into a latent space, identifying undervalued basket of stocks with minimal shared information......(摘要翻译及全文见知识星球)
Keywords : Asset Allocation, Numerical Stability, Autoencoder, Machine Learning, Arbitrage

[5] A neural network architecture for maximizing alpha in a market timing investment strategy

标题:一种用于在市场时机投资策略中最大化阿尔法的神经网络架构
作者:Javier H. Ospina-Holguín,Ana Padilla Ospina
来源:SSRN_20240725
Abstract : In finance, assuming more risk often corresponds to the expectation of higher, compensating returns. In this setting, alpha stands out as one of the most prevalent and refined measures of risk-adjusted return ever postulated, allowing for the estimation of the excess return that cannot be explained by the risk factors impacting an asset. This article introduces a neural network architecture designed......(摘要翻译及全文见知识星球)
Keywords : Alpha, Asset Pricing, Reinforcement Learning, Stock Returns, Investment Decisions, Random Walk Hypothesis, Market Timing, Machine Learning, Artificial Intelligence

Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/172764
 
214 次点击