社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  机器学习算法

小型深度学习框架 | TinyGrad,不到1K行代码(附代码下载)

计算机视觉研究院 • 7 月前 • 211 次点击  

欢迎关注“
计算机视觉研究院

计算机视觉研究院专栏
作者:计算机视觉研究院



最近,天才黑客 George Hotz 开源了一个小型深度学习框架 tinygrad,兼具 PyTorch micrograd 的功能。tinygrad 的代码数量不到 1000 行,目前该项目获得了 GitHub 1400 星。

在深度学习时代,谷歌、Facebook、百度等科技巨头开源了多款框架来帮助开发者更轻松地学习、构建和训练不同类型的神经网络。而这些大公司也花费了很大的精力来维护 TensorFlowPyTorch 这样庞大的深度学习框架。除了这类主流框架之外,开发者们也会开源一些小而精的框架或者库。比如今年 4 月份,特斯拉人工智能部门主管 Andrej Karpathy 开源了其编写的微型 autograd 引擎 micrograd,该引擎还用 50 行代码实现了一个类 PyTorch api 的神经网络库。目前,micrograd 项目的 GitHub star 量达到 1200 星。不久前,天才黑客 George Hotz(乔治 · 霍兹)开源了一个小型 Autograd Tensor tinygrad,它介于 PyTorch micrograd 之间,能够满足做深度学习的大部分要求。上线不到一个月,该项目在 GitHub 上已经获得 1400 星。


根据 GitHub 内容,下文对 tinygrad 的安装与使用做了简要介绍。感兴趣的同学也可通过 George Hotz 的 YouTube 视频进行学习。

视频地址:https://www.youtube.com/channel/UCwgKmJM4ZJQRJ-U5NjvR2dg


tinygrad 的安装与使用


「tinygrad 可能不是最好的深度学习框架,但它确实是深度学习框架。」


George 在项目中保证,tinygrad 代码量会永远小于 1000 行。

 

安装

tinygrad 的安装过程非常简单,只需使用以下命令:
pip3 install tinygrad --upgrade

示例

安装好 tinygrad 之后,就可以进行示例运行,代码如下:
from tinygrad.tensor import Tensor
x = Tensor.eye(3)y = Tensor([[2.0,0,-2.0]])z = y.matmul(x).sum()z.backward()
print(x.grad) # dz/dxprint(y.grad) # dz/dy


使用 torch 的代码如下:

import torch
x = torch.eye(3, requires_grad=True)y = torch.tensor([[2.0,0,-2.0]], requires_grad=True)z = y.matmul(x).sum()z.backward()
print(x.grad) # dz/dxprint(y.grad) # dz/dy


满足对神经网络的需求


一个不错的autograd张量库可以满足你对神经网络 90%的需求。从 tinygrad.optim 添加优化器(SGD、RMSprop、Adam),再编写一些 minibatching 样板代码,就可以实现你的需求。

示例如下:

from tinygrad.tensor import Tensorimport tinygrad.optim as optimfrom tinygrad.utils import layer_init_uniform
class TinyBobNet: def __init__(self): self.l1 = Tensor(layer_init_uniform(784, 128)) self.l2 = Tensor(layer_init_uniform(128, 10))
def forward(self, x): return x.dot(self.l1).relu().dot(self.l2).logsoftmax()
model = TinyBobNet()optim = optim.SGD([model.l1, model.l2], lr=0.001)
# ... and complete like pytorch, with (x,y) data
out = model.forward(x)loss = out.mul(y).mean()loss.backward()optim.step()


支持 GPU
tinygrad 通过 PyOpenCL 支持 GPU。但后向传播暂时无法支持所有 ops。
from tinygrad.tensor import Tensor(Tensor.ones(4,4).cuda() + Tensor.ones(4,4).cuda()).cpu()


ImageNet inference

「麻雀虽小,五脏俱全。」tinygrad 还能够支持 full EfficientNet,输入一张图像,即可得到其类别。
ipython3 examples/efficientnet.py https://upload.wikimedia.org/wikipedia/commons/4/41/Chicken.jpg

如果你安装了 webcam 和 cv2,则可以使用以下代码:

ipython3 examples/efficientnet.py webcam
注意:如果你想加速运行,设置 GPU=1。

测试

运行以下代码可执行测试:
python -m pytest

此外,乔治 · 霍兹还计划添加语言模型、检测模型,进一步减少代码量、提升速度等。

TODO

  • Train an EfficientNet on ImageNet

    • Make broadcasting work on the backward pass (simple please)

    • EfficientNet backward pass

    • Tensors on GPU (a few more backward)

  • Add a language model. BERT?

  • Add a detection model. EfficientDet?

  • Reduce code

  • Increase speed

  • Add features

/End.


如果想加入我们“计算机视觉研究院”,请扫二维码加入我们。我们会按照你的需求将你拉入对应的学习群!
计算机视觉研究院主要涉及深度学习领域,主要致力于人脸检测、人脸识别,多目标检测、目标跟踪、图像分割等研究方向。研究院接下来会不断分享最新的论文算法新框架,我们这次改革不同点就是,我们要着重”研究“。之后我们会针对相应领域分享实践过程,让大家真正体会摆脱理论的真实场景,培养爱动手编程爱动脑思考的习惯!

后台回复“TinyGrad

获取源码下载地址

计算机视觉研究院
长按扫描二维码关注我们

Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/170250
 
211 次点击