#机器学习# 【摩根大通联合调查显示:未来一年半82%企业高管会加大机器学习投资力度】
#人工智能# 和机器学习经过数十年的研究和开发,现在正进入企业的方方面面,涵盖从聊天机器人到拖拉机,从金融市场到#医学研究# 等许多领域。但是,在将技术的小规模应用扩大到覆盖全公司的大规模应用时,许多公司遇到了挑战,几个主要原因包括缺乏合适的数据、人才缺口、不明确的价值主张,以及对风险和责任的担忧。
以下内容来自由摩根大通委托并联合制作的 MIT Technology Review Insights 报告,该报告基于对 300 名高管的调查问卷,以及对来自金融、#医疗保健# 、学术界和技术领域的 7 位专家的采访,列出了人工智能和机器学习部署过程中的驱动力和障碍。
报告的主要结论如下:
企业相信人工智能和机器学习,但很难在整个组织中扩展。绝大多数(93%)的受访者表示,有几个实验性或正在使用的人工智能和机器学习项目,大公司相对部署的更多。
大多数受访者(82%)表示,在未来 18 个月内对机器学习投资将会增加,并将人工智能和机器学习与应收目标紧密联系在一起。然而,如何扩展是一个主要挑战,比如雇用懂技术的员工、找到合适的用例和显示价值。
戳链接查看详情:网页链接
#人工智能# 和机器学习经过数十年的研究和开发,现在正进入企业的方方面面,涵盖从聊天机器人到拖拉机,从金融市场到#医学研究# 等许多领域。但是,在将技术的小规模应用扩大到覆盖全公司的大规模应用时,许多公司遇到了挑战,几个主要原因包括缺乏合适的数据、人才缺口、不明确的价值主张,以及对风险和责任的担忧。
以下内容来自由摩根大通委托并联合制作的 MIT Technology Review Insights 报告,该报告基于对 300 名高管的调查问卷,以及对来自金融、#医疗保健# 、学术界和技术领域的 7 位专家的采访,列出了人工智能和机器学习部署过程中的驱动力和障碍。
报告的主要结论如下:
企业相信人工智能和机器学习,但很难在整个组织中扩展。绝大多数(93%)的受访者表示,有几个实验性或正在使用的人工智能和机器学习项目,大公司相对部署的更多。
大多数受访者(82%)表示,在未来 18 个月内对机器学习投资将会增加,并将人工智能和机器学习与应收目标紧密联系在一起。然而,如何扩展是一个主要挑战,比如雇用懂技术的员工、找到合适的用例和显示价值。
戳链接查看详情:网页链接