
向AI转型的程序员都关注了这个号👇👇👇
1. CLIP简介
CLIP全称Constrastive Language-Image Pre-training,是OPAI推出的采用对比学习的文本-图像预训练模型。CLIP惊艳之处在于架构非常简洁且效果好到难以置信,在zero-shot文本-图像检索,zero-shot图像分类,文本→图像生成任务guidance,open-domain 检测分割等任务上均有非常惊艳的表现,本文将对CLIP做一些初步的介绍。
论文地址
https://arxiv.org/abs/2103.00020

2. CLIP模型简介
CLIP的基本算法原理如下,为了对image和text建立联系,首先分别对image和text进行特征提取,image特征提取的backbone可以是resnet系列模型也可以是VIT系列模型,text特征提取目前一般采用bert模型,特征提取之后,由于做了normalize,直接相乘来计算余弦距离,同一pair对的结果趋近于1,不同pair对的结果趋近于0,因为就可以采用对比损失loss(info-nce-loss),熟悉这个loss的同学应该都清楚,这种计算loss方式效果与batch size有很大关系,一般需要比较大的batch size才能有效果。CLIP的模型如下图所示:

CLIP 能够成功,并且很难自己复现的一个重要原因就是CLIP用了大量的训练数据以及训练资源,真的可以说是大力出奇迹。CLIP用了4亿的图像文本对进行训练。
伪代码如下:
编码 :通过图像&文本编码器,得分图像和文本特征。
投影:首先通过投影矩阵将图像及文本特征映射到相同的维度大小,在进行L2 normalization (使得之后的点积操作直接等效于cosine similarity)
相似度计算:点积运算计算文本-图像的cosine similarity,得到 n x n 矩阵的logits(模型预测),越接近1则说明模型预测该文本-图像对是配对的,否则不配对。
计算loss:已知 logits 矩阵对角线的文本和图像是配对的,非对角线元素不配对,因此构造训练标签 np.arange(n),然后分别在图像维度(axis=0) 和文本维度(axis=1)计算loss。以图像维度为例简单说明一下这里的逻辑,因为在计算相似度的时候,图像特征矩阵@文本特征矩阵得到的 n x n 矩阵,第一个n 代表的图像,因此我们在axis=0 计算图像维度的loss。
CLIP开源代码获取地址:
关注微信公众号 datayx 然后回复 CLIP 即可获取。
3. CLIP模型优缺点总结
优点
zero-shot做得好,经过在400million大的未清洗的数据集上训练,在不同的数据集上表现还可以,可以自定义任务,而且效率很高。
高效,虽然GPT3做zero-shot也很好,但是CLIP吃的资源少,计算量少,训练效率高。最好的一版CLIP只在256个GPU上训练两周就好了,跟目前图像领域的其他大模型都差不多。
灵活和通用:因为他们直接从自然语言中学习广泛的视觉概念,CLIP明显比现有的ImageNet模型更灵活和通用。我们发现他们能够轻松地完成许多不同的任务。
缺点
虽然CLIP通常在识别普通物体方面表现良好,但在更抽象或更系统的任务上却表现不佳。比如计算图像中物体的数量,以及在更复杂的任务上,比如预测照片中最近的汽车距离有多近。在这两个数据集上,零射剪辑只比随机猜测好一点点。与特定任务模型相比,Zero-shot CLIP在非常细粒度的分类上也很困难,比如区分汽车模型、飞机变体或花卉种类之间的区别。
对于未包含在其预训练数据集中的图像,CLIP的泛化效果也很差。例如,尽管CLIP学习了一个有效的OCR系统,但当从MNIST数据集评估手写数字时,zero-shot CLIP仅达到88%的准确率,远低于数据集上99.75%的人的准确率。(其实还行,毕竟不是专门在MNIST上跑的)

机器学习算法AI大数据技术
搜索公众号添加: datanlp

长按图片,识别二维码
阅读过本文的人还看了以下文章:
TensorFlow 2.0深度学习案例实战
基于40万表格数据集TableBank,用MaskRCNN做表格检测
《基于深度学习的自然语言处理》中/英PDF
Deep Learning 中文版初版-周志华团队
【全套视频课】最全的目标检测算法系列讲解,通俗易懂!
《美团机器学习实践》_美团算法团队.pdf
《深度学习入门:基于Python的理论与实现》高清中文PDF+源码
《深度学习:基于Keras的Python实践》PDF和代码
特征提取与图像处理(第二版).pdf
python就业班学习视频,从入门到实战项目
2019最新《PyTorch自然语言处理》英、中文版PDF+源码
《21个项目玩转深度学习:基于TensorFlow的实践详解》完整版PDF+附书代码
《深度学习之pytorch》pdf+附书源码
PyTorch深度学习快速实战入门《pytorch-handbook》
【下载】豆瓣评分8.1,《机器学习实战:基于Scikit-Learn和TensorFlow》
《Python数据分析与挖掘实战》PDF+完整源码
汽车行业完整知识图谱项目实战视频(全23课)
李沐大神开源《动手学深度学习》,加州伯克利深度学习(2019春)教材
笔记、代码清晰易懂!李航《统计学习方法》最新资源全套!
《神经网络与深度学习》最新2018版中英PDF+源码
将机器学习模型部署为REST API
FashionAI服装属性标签图像识别Top1-5方案分享
重要开源!CNN-RNN-CTC 实现手写汉字识别
yolo3 检测出图像中的不规则汉字
同样是机器学习算法工程师,你的面试为什么过不了?
前海征信大数据算法:风险概率预测
【Keras】完整实现‘交通标志’分类、‘票据’分类两个项目,让你掌握深度学习图像分类
VGG16迁移学习,实现医学图像识别分类工程项目
特征工程(一)
特征工程(二) :文本数据的展开、过滤和分块
特征工程(三):特征缩放,从词袋到 TF-IDF
特征工程(四): 类别特征
特征工程(五): PCA 降维
特征工程(六): 非线性特征提取和模型堆叠
特征工程(七):图像特征提取和深度学习
如何利用全新的决策树集成级联结构gcForest做特征工程并打分?
Machine Learning Yearning 中文翻译稿
蚂蚁金服2018秋招-算法工程师(共四面)通过
全球AI挑战-场景分类的比赛源码(多模型融合)
斯坦福CS230官方指南:CNN、RNN及使用技巧速查(打印收藏)
python+flask搭建CNN在线识别手写中文网站
中科院Kaggle全球文本匹配竞赛华人第1名团队-深度学习与特征工程
不断更新资源
深度学习、机器学习、数据分析、python
搜索公众号添加: datayx
