社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  机器学习算法

哈佛“数据科学导论”课程对所有人免费开放!包括机器学习和回归分析等各种方法!

计量经济圈 • 2 年前 • 319 次点击  

凡是搞计量经济的,都关注这个号了

稿件:econometrics666@126.com

所有计量经济圈方法论丛的code程序 , 宏微观数据库和各种软件都放在社群里.欢迎到计量经济圈社群交流访问.

接着“耶鲁开设“应用实证方法”P.hd课程, 强逻辑, 好文献, 重实操, 真前沿, 送slides和笔记!” 和“加拿大经济学会主席的"机器学习"课程可以学习了! 共计20份Slides直指ML前沿!” 今天,我们推荐一门绝对实在的哈佛《数据科学导论》课程,里面包括机器学习和回归分析等各种方法,而且该课程对所有人免费开放!课程材料包括讲义和软件实操代码,真的是非常容易入门又经典的课程。文后附上了课程主页和二维码,可以直接进入学习相关章节。
  1. 讲义

  2. R 代码、Python Notebooks

  3. 实验室材料

  4. 高级部分

欢迎来到《数据科学导论课程》。本课程是为期一年的数据科学导论的前半部分。该课程的重点是分析混乱的现实生活数据,使用统计和机器学习方法进行预测。
课程分为3个模块,每个模块都将使用数据开展如下五个关键方面的学习:
  1. 数据采集——数据整理、清洗、采样,得到合适的数据集;

  2. 数据管理——快速可靠地访问数据;

  3. 探索性数据分析——产生假设和建立直觉;

  4. 预测或统计学习;

  5. 交流——通过可视化、故事和可解释的总结来总结结果。

课程讲义


  • Lecture 1: Introduction (Sep. 03, 2019)

  • Lecture 2: Data and Data Exploration (Sep. 04, 2019)

  • Lecture 3: Pandas and Web Scraping (Sep. 11, 2019)

  • Lecture 4: Introduction to Regression (Sep. 16, 2019)

  • Lecture 5: Linear Regression (Sep. 18, 2019)

  • Lecture 6: Multiple Linear Regression, Polynomial Regression (Sep. 23, 2019)

  • Lecture 7: Model Selection and Regularization (Sep. 25, 2019)

  • Lecture 8: Regularization and EDA (Sep. 30, 2019)

  • Lecture 9: Visualization for Communication (Oct. 02, 2019)

  • Lecture 10: Logistic Regression (Oct. 07, 2019)

  • Lecture 11: Logistic Regression 2 (Oct. 09, 2019)

  • Lecture 12: KNN Classification & Imputation (Oct. 16, 2019)

  • Lecture 14: PCA (Oct. 23, 2019)

  • Lecture 15: Decision Trees (Oct. 28, 2019)

  • Lecture 16: Bagging, & Random Forest (Oct. 30, 2019)

  • Lecture 17: Boosting Methods (Nov. 04, 2019)

  • Lecture 18: Neural Networks 1 – Perceptron and MLP (Nov. 06, 2019)

  • Lecture 19: NN 2: Anatomy of NN, design choices (Nov. 11, 2019)

  • Lecture 20: NN 3: Back Propagation (Nov. 13, 2019)

  • Lecture 21: NN 4: Regularization methods (Nov. 18, 2019)

  • Lecture 22: Visualization for Model Interpretation (Nov. 20, 2019)

  • Lecture 23: Experimental Design & Testing I (Nov. 25, 2019)

  • Lecture 24: Experimental Design & Testing II (Dec. 02, 2019)

主题和R、Python代码实操

Activation Function

  • Lab 11: Neural Network Basics - Introduction to tf.keras [Notebook]

  • Lab 11: Neural Network Basics - Introduction to tf.keras [Notebook]

  • Lab 11: Neural Network Basics - Introduction to tf.keras

AdaBoost

  • Lecture 17: Boosting Methods

  • Lecture 17: Boosting Methods [Notebook]

Adaboost And Xgboost

  • S-Section 08: Review Trees and Boosting including Ada Boosting Gradient Boosting and XGBoost [Notebook]

  • S-Section 08: Review Trees and Boosting including Ada Boosting Gradient Boosting and XGBoost

Array Reshape

  • Lab 3: Matplotlib, Simple Linear Regression, kNN, array reshape

  • Lab 03: Extended Matplotlib, Simple Linear Regression, kNN, array reshape [Notebook]

  • Lab 03: Prelab [Notebook]

  • Lab 03: Matplotlib, Simple Linear Regression, kNN, array reshape [Notebook]

Bagging

  • S-Section 08: Review Trees and Boosting including Ada Boosting Gradient Boosting and XGBoost [Notebook]

  • S-Section 08: Review Trees and Boosting including Ada Boosting Gradient Boosting and XGBoost

  • S-Section 06: Bagging and Random Forest [Notebook]

  • S-Section 07: Bagging and Random Forest

  • Lab 9: Decision Trees

  • Lab 9: Decision Trees [Notebook]

  • Lecture 16: Bagging, & Random Forest

Batching

  • S-Section 09: Feed forward neural networks [Notebook]

  • S-Section 09: Feed forward neural networks

Bayesian

  • Advanced Section 2: Regularization

  • Advanced Sections 2: [Notebook]

Beautiful Soup

  • Lab 2: Pandas and Scraping

Beautifulsoup

  • S-Section 01: Introduction to Web Scraping [Notebook]

  • S-Section 01: Introduction to Web Scraping [Notebook]

  • S-Section 01: Introduction to Web Scraping

Bias

  • Lecture 8: Regularization and EDA

Biases

  • Lecture 8: Regularization and EDA

Big Data

  • S-Section 06: PCA and Logistic Regression [Notebook]

  • S-Section 06: PCA and Logistic Regression

Boosting

  • S-Section 08: Review Trees and Boosting including Ada Boosting Gradient Boosting and XGBoost [Notebook]

  • S-Section 08: Review Trees and Boosting including Ada Boosting Gradient Boosting and XGBoost

  • Lecture 17: Boosting Methods

  • Lecture 17: Boosting Methods [Notebook]

Bootstrap

  • Lecture 5: Linear Regression

Boundaries

  • Lecture 10: Logistic Regression [Notebook]

Categorical Predictors

  • Lecture 6: Multiple Linear Regression, Polynomial Regression

Categorical Variables

  • S-Section 03: Multiple Linear and Polynomial Regression [Notebook]

  • S-Section 03: Multiple Linear and Polynomial Regression

CI

  • Lecture 5: Linear Regression

Classification

  • Lecture 15: Decision Trees

  • Lecture 15: Decision Trees [Notebook]

  • S-Section 05: Logistic Regression, Multiple Logistic Regression, and KNN-classification [Notebook]

  • S-Section 05: Logistic Regression, Multiple Logistic Regression, and KNN-classification

  • Lecture 12: KNN Classification & Imputation

  • Lecture 10: Logistic Regression [Notebook]

Collinearity

  • Lecture 6: Multiple Linear Regression, Polynomial Regression

Communication

  • Lecture 9: Visualization for Communication

Confidence Intervals

  • S-Section 02: kNN and Linear Regression [Notebook]

  • S-Section 02: kNN and Linear Regression

  • Lecture 5: Linear Regression

Confusion Matrix

  • Lecture 11: Logistic Regression 2 [Notebook]

Crawl

  • Lab 2: Pandas and Scraping

Cross-Validation

  • Lecture 11: Logistic Regression 2 [Notebook]

  • S-Section 04: Regularization and Model Selection [Notebook]

  • S-Section 04: Regularization and Model Selection

  • Lab 4: Multiple and Polynomial Regression

  • Lab 04: Multiple and Polynomial Regression [Notebook]

  • Lab 04: Multiple and Polynomial Regression [Notebook]

  • Lecture 7: Model Selection and Regularization

CV

  • Lecture 11: Logistic Regression 2 [Notebook]

Data

  • Lecture 2: Data and Data Exploration

Data Cleaning

  • Lecture 3: Code Pandas + Beautiful Soup [Notebook]

Data Exploration

  • Lecture 2: Data and Data Exploration

Data Science Demo

  • Lecture 2: Data Science Demo (repeat from Lecture 1) [Notebook]

  • Lecture 1: Data Science Demo [Notebook]

Data Science Process

  • Lecture 1: Introduction

Data Scraping

  • S-Section 01: Introduction to Web Scraping [Notebook]

  • S-Section 01: Introduction to Web Scraping [Notebook]

  • S-Section 01: Introduction to Web Scraping

Dataframe

  • Lecture 3: Pandas and Web Scraping

Decision Boundaries

  • S-Section 05: Logistic Regression, Multiple Logistic Regression, and KNN-classification [Notebook]

  • S-Section 05: Logistic Regression, Multiple Logistic Regression, and KNN-classification

Decision Trees

  • S-Section 08: Review Trees and Boosting including Ada Boosting Gradient Boosting and XGBoost [Notebook]

  • S-Section 08: Review Trees and Boosting including Ada Boosting Gradient Boosting and XGBoost

  • S-Section 06: Bagging and Random Forest [Notebook]

  • S-Section 07: Bagging and Random Forest

  • Lab 9: Decision Trees

  • Lab 9: Decision Trees [Notebook]

  • Lecture 15: Decision Trees

  • Lecture 15: Decision Trees [Notebook]

Demo

  • Advanced Section 2: Regularization

  • Advanced Sections 2: [Notebook]

Descriptive Statistics

  • Lecture 2: Data and Data Exploration

Dictionaries

  • Lab 1: Python basics, YAML environments, Numpy

Dimensionality Reduction

  • S-Section 06: PCA and Logistic Regression [Notebook]

  • S-Section 06: PCA and Logistic Regression

  • Lab 8: PCA

  • Lab 8: PCA [Notebook]

  • Advanced Sections 4: PCA

  • Lecture 14: PCA

  • Lecture 14: PCA [Notebook]

Dropout

  • Lab 12: Building and Regularizing your first Neural Network [Notebook]

  • Lab 12: Building and Regularizing your first Neural Network [Notebook]

Eda

  • Lecture 9: Visualization for Communication

  • Lecture 8: Regularization and EDA

  • Lecture 3: Pandas and Web Scraping

Eigenvalues

  • Advanced Sections 4: PCA

Eigenvectors

  • Advanced Sections 4: PCA

  • Advanced Section 1: Linear Algebra and Hypothesis Testing

Eignevalues

  • Advanced Section 1: Linear Algebra and Hypothesis Testing

Elastic Net

  • Advanced Section 2: Regularization

  • Advanced Sections 2: [Notebook]

Entropy

  • Lab 9: Decision Trees

  • Lab 9: Decision Trees [Notebook]

  • Lecture 15: Decision Trees

  • Lecture 15: Decision Trees [Notebook]

Explained Variance

  • S-Section 06: PCA and Logistic Regression [Notebook]

  • S-Section 06: PCA and Logistic Regression

Exploratory Data Analysis

  • Lecture 3: Pandas and Web Scraping

Feed Forward

  • S-Section 09: Feed forward neural networks [Notebook]

  • S-Section 09: Feed forward neural networks

Feed Forward Neural Networks

  • Lab 12: Building and Regularizing your first Neural Network [Notebook]

  • Lab 12: Building and Regularizing your first Neural Network [Notebook]

  • Lab 11: Neural Network Basics - Introduction to tf.keras [Notebook]

  • Lab 11: Neural Network Basics - Introduction to tf.keras [Notebook]

  • Lab 11: Neural Network Basics - Introduction to tf.keras

Functions

  • Lab 1: Python basics, YAML environments, Numpy

Gini Index

  • Lecture 15: Decision Trees

  • Lecture 15: Decision Trees [Notebook]

GLM

  • Advanced Section 3: Generalized Linear Models

  • Advanced Section 3: Generalized Linear Models [Notebook]

Google Sites

  • Lab 13: Making websites! [Notebook]

Gradient Descent

  • Lecture 17: Boosting Methods

  • Lecture 17: Boosting Methods [Notebook]

Html

  • Lab 13: Making websites! [Notebook]

Http

  • Lab 13: Making websites! [Notebook]

Hypothesis Testing

  • Lecture 6: Multiple Linear Regression, Polynomial Regression

  • Advanced Section 1: Linear Algebra and Hypothesis Testing

  • Lecture 5: Linear Regression

Imputation

  • Lecture 12: KNN Classification & Imputation

Information Gain

  • Lab 9: Decision Trees

  • Lab 9: Decision Trees [Notebook]

Interaction Terms

  • S-Section 03: Multiple Linear and Polynomial Regression [Notebook]

  • S-Section 03: Multiple Linear and Polynomial Regression

  • Lecture 6: Multiple Linear Regression, Polynomial Regression

Introduction

  • Lecture 1: Introduction

K-Nearest Neighbors (KNN) Regression

  • Lab 3: Scikit-learn for Regression [Notebook]

Keras

  • Lab 12: Building and Regularizing your first Neural Network [Notebook]

  • Lab 12: Building and Regularizing your first Neural Network [Notebook]

  • Lab 11: Neural Network Basics - Introduction to tf.keras [Notebook]

  • Lab 11: Neural Network Basics - Introduction to tf.keras [Notebook]

  • Lab 11: Neural Network Basics - Introduction to tf.keras

  • S-Section 09: Feed forward neural networks [Notebook]

  • S-Section 09: Feed forward neural networks

KNN

  • Lecture 12: KNN Classification & Imputation

  • Lab 3: Matplotlib, Simple Linear Regression, kNN, array reshape

  • Lab 03: Extended Matplotlib, Simple Linear Regression, kNN, array reshape [Notebook]

  • Lab 03: Prelab [Notebook]

  • Lab 03: Matplotlib, Simple Linear Regression, kNN, array reshape [Notebook]

KNN-Classification

  • S-Section 05: Logistic Regression, Multiple Logistic Regression, and KNN-classification [Notebook]

  • S-Section 05: Logistic Regression, Multiple Logistic Regression, and KNN-classification

KNN Imputation Classification

  • Lecture 12: KNN Classification & Imputation [Notebook]

Knn K-Nearest Neighbors (KNN)

  • S-Section 02: kNN and Linear Regression [Notebook]

  • S-Section 02: kNN and Linear Regression

KNN Regression

  • Lecture 4: Introduction to Regression

Lasso

  • S-Section 04: Regularization and Model Selection [Notebook]

  • S-Section 04: Regularization and Model Selection

  • Lecture 8: Regularization and EDA

  • Advanced Section 2: Regularization

  • Advanced Sections 2: [Notebook]

Linear Algebra

  • Advanced Section 1: Linear Algebra and Hypothesis Testing

Linear Regression

  • Lab 6: Logistic Regression

  • Lab 6: Logistic Regression [Notebook]

  • Lab 6: Logistic Regression [Notebook]

  • Lab 4: Multiple and Polynomial Regression

  • Lab 04: Multiple and Polynomial Regression [Notebook]

  • Lab 04: Multiple and Polynomial Regression [Notebook]

  • S-Section 02: kNN and Linear Regression [Notebook]

  • S-Section 02: kNN and Linear Regression

  • Lecture 5: Linear Regression

  • Lab 3: Scikit-learn for Regression [Notebook]

Lists

  • Lab 1: Python basics, YAML environments, Numpy

Logistic Regression

  • S-Section 06: PCA and Logistic Regression [Notebook]

  • S-Section 06: PCA and Logistic Regression

  • S-Section 05: Logistic Regression, Multiple Logistic Regression, and KNN-classification [Notebook]

  • S-Section 05: Logistic Regression, Multiple Logistic Regression, and KNN-classification

  • Lab 6: Logistic Regression

  • Lab 6: Logistic Regression [Notebook]

  • Lab 6: Logistic Regression [Notebook]

  • Lecture 11: Logistic Regression 2 [Notebook]

  • Lecture 10: Logistic Regression [Notebook]

Logistics

  • Lecture 1: Introduction

Matplotlib

  • Lab 5: Exploratory Data Analysis, seaborn, more Plotting

  • Lab 3: Matplotlib, Simple Linear Regression, kNN, array reshape

  • Lab 03: Extended Matplotlib, Simple Linear Regression, kNN, array reshape [Notebook]

  • Lab 03: Prelab [Notebook]

  • Lab 03: Matplotlib, Simple Linear Regression, kNN, array reshape [Notebook]

  • S-Section 01: Introduction to Web Scraping [Notebook]

  • S-Section 01: Introduction to Web Scraping [Notebook]

  • S-Section 01: Introduction to Web Scraping

  • Lab 5: Exploratory Data Analysis, seaborn, more Plotting [Notebook]

  • Lab 5: Exploratory Data Analysis, seaborn, more Plotting [Notebook]

Metrics

  • Lecture 11: Logistic Regression 2 [Notebook]

Mle

  • Lab 6: Logistic Regression

  • Lab 6: Logistic Regression [Notebook]

  • Lab 6: Logistic Regression [Notebook]

MNIST

  • S-Section 06: PCA and Logistic Regression [Notebook]

  • S-Section 06: PCA and Logistic Regression

Model Selection

  • S-Section 04: Regularization and Model Selection [Notebook]

  • S-Section 04: Regularization and Model Selection

  • Advanced Section 2: Regularization

  • Advanced Sections 2: [Notebook]

  • Lecture 7: Model Selection and Regularization

Multiclass

  • Lecture 11: Logistic Regression 2 [Notebook]

Multilayer Perceptron

  • Lab 11: Neural Network Basics - Introduction to tf.keras [Notebook]

  • Lab 11: Neural Network Basics - Introduction to tf.keras [Notebook]

  • Lab 11: Neural Network Basics - Introduction to tf.keras

Multinomial Regression

  • Lab 4: Multiple and Polynomial Regression

  • Lab 04: Multiple and Polynomial Regression [Notebook]

  • Lab 04: Multiple and Polynomial Regression [Notebook]

Multiple Linear Regression

  • S-Section 03: Multiple Linear and Polynomial Regression [Notebook]

  • S-Section 03: Multiple Linear and Polynomial Regression

  • Lecture 6: Multiple Linear Regression, Polynomial Regression

Multiple Logistic Regression

  • S-Section 05: Logistic Regression, Multiple Logistic Regression, and KNN-classification [Notebook]

  • S-Section 05: Logistic Regression, Multiple Logistic Regression, and KNN-classification

Neural Networks

  • S-Section 10: Feed Forward Neural Networks, Regularization, SGD Solver [Notebook]

  • S-Section 10: Feed Forward Neural Networks, Regularization, SGD Solver

  • Lab 12: Building and Regularizing your first Neural Network [Notebook]

  • Lab 12: Building and Regularizing your first Neural Network [Notebook]

  • Lab 11: Neural Network Basics - Introduction to tf.keras [Notebook]

  • Lab 11: Neural Network Basics - Introduction to tf.keras [Notebook]

  • Lab 11: Neural Network Basics - Introduction to tf.keras

  • S-Section 09: Feed forward neural networks [Notebook]

  • S-Section 09: Feed forward neural networks

NumPy

  • Lab 1: Python basics, YAML environments, Numpy

  • Lab 01: YAML Environments, Python basics, Numpy [Notebook]

OOB

  • Lecture 16: Bagging, & Random Forest

Out Of Bag Error

  • Lecture 16: Bagging, & Random Forest

Overfitting

  • S-Section 10: Feed Forward Neural Networks, Regularization, SGD Solver [Notebook]

  • S-Section 10: Feed Forward Neural Networks, Regularization, SGD Solver

  • Lecture 6: Multiple Linear Regression, Polynomial Regression

P-Values

  • Lecture 5: Linear Regression

Pairplot

  • S-Section 03: Multiple Linear and Polynomial Regression [Notebook]

  • S-Section 03: Multiple Linear and Polynomial Regression

Pandas

  • Lab 5: Exploratory Data Analysis, seaborn, more Plotting

  • S-Section 01: Introduction to Web Scraping [Notebook]

  • S-Section 01: Introduction to Web Scraping [Notebook]

  • S-Section 01: Introduction to Web Scraping

  • Lab 02: More Pandas [Notebook]

  • Lab 02: Scraping [Notebook]

  • Lecture 3: Code Pandas + Beautiful Soup [Notebook]

  • Lecture 3: Pandas and Web Scraping

  • Lab 5: Exploratory Data Analysis, seaborn, more Plotting [Notebook]

  • Lab 5: Exploratory Data Analysis, seaborn, more Plotting [Notebook]

Pca

  • Lab 8: PCA

  • Lab 8: PCA [Notebook]

  • Advanced Sections 4: PCA

  • Lecture 14: PCA

  • Lecture 14: PCA [Notebook]

Pipeline

  • S-Section 05: Logistic Regression, Multiple Logistic Regression, and KNN-classification [Notebook]

  • S-Section 05: Logistic Regression, Multiple Logistic Regression, and KNN-classification

Plots

  • Lab 5: Exploratory Data Analysis, seaborn, more Plotting

  • Lab 5: Exploratory Data Analysis, seaborn, more Plotting [Notebook]

  • Lab 5: Exploratory Data Analysis, seaborn, more Plotting [Notebook]

Polynomial Regression

  • S-Section 03: Multiple Linear and Polynomial Regression [Notebook]

  • S-Section 03: Multiple Linear and Polynomial Regression

  • Lab 4: Multiple and Polynomial Regression

  • Lab 04: Multiple and Polynomial Regression [Notebook]

  • Lab 04: Multiple and Polynomial Regression [Notebook]

  • Lecture 6: Multiple Linear Regression, Polynomial Regression

Predictors

  • Lecture 4: Introduction to Regression

Principal Components Analysis

  • S-Section 06: PCA and Logistic Regression [Notebook]

  • S-Section 06: PCA and Logistic Regression

Principle Component Analysis

  • Lab 8: PCA

  • Lab 8: PCA [Notebook]

Probabilities

  • Lecture 10: Logistic Regression [Notebook]

Python

  • Lab 01: YAML Environments, Python basics, Numpy [Notebook]

Qualitative Predictors

  • Lecture 6: Multiple Linear Regression, Polynomial Regression

R-Square

  • Lecture 4: Introduction to Regression

R^2

  • Lecture 4: Introduction to Regression

Random Forest

  • S-Section 08: Review Trees and Boosting including Ada Boosting Gradient Boosting and XGBoost [Notebook]

  • S-Section 08: Review Trees and Boosting including Ada Boosting Gradient Boosting and XGBoost

  • S-Section 06: Bagging and Random Forest [Notebook]

  • S-Section 07: Bagging and Random Forest

  • Lecture 16: Bagging, & Random Forest

Regression

  • Lecture 6: Multiple Linear Regression, Polynomial Regression

Regression Trees

  • Lab 9: Decision Trees

  • Lab 9: Decision Trees [Notebook]

Regularization

  • S-Section 10: Feed Forward Neural Networks, Regularization, SGD Solver [Notebook]

  • S-Section 10: Feed Forward Neural Networks, Regularization, SGD Solver

  • Lab 12: Building and Regularizing your first Neural Network [Notebook]

  • Lab 12: Building and Regularizing your first Neural Network [Notebook]

  • Lecture 11: Logistic Regression 2 [Notebook]

  • S-Section 04: Regularization and Model Selection [Notebook]

  • S-Section 04: Regularization and Model Selection

  • Advanced Section 2: Regularization

  • Advanced Sections 2: [Notebook]

Requests

  • Lab 2: Pandas and Scraping

Response Variable

  • Lecture 4: Introduction to Regression

RF

  • Lecture 16: Bagging, & Random Forest

Ridge

  • S-Section 04: Regularization and Model Selection [Notebook]

  • S-Section 04: Regularization and Model Selection

  • Advanced Section 2: Regularization

  • Advanced Sections 2: [Notebook]

Ridge Regression

  • Lecture 8: Regularization and EDA

Roc

  • Lecture 11: Logistic Regression 2 [Notebook]

Scikit-Learn

  • Lab 3: Scikit-learn for Regression [Notebook]

Scraping

  • Lab 2: Pandas and Scraping

  • Lecture 3: Pandas and Web Scraping

Seaborn

  • Lab 5: Exploratory Data Analysis, seaborn, more Plotting

  • Lab 5: Exploratory Data Analysis, seaborn, more Plotting [Notebook]

  • Lab 5: Exploratory Data Analysis, seaborn, more Plotting [Notebook]

Simple Linear Regression

  • Lab 3: Matplotlib, Simple Linear Regression, kNN, array reshape

  • Lab 03: Extended Matplotlib, Simple Linear Regression, kNN, array reshape [Notebook]

  • Lab 03: Prelab [Notebook]

  • Lab 03: Matplotlib, Simple Linear Regression, kNN, array reshape [Notebook]

Sklearn

  • Lecture 11: Logistic Regression 2 [Notebook]

  • Lecture 10: Logistic Regression [Notebook]

  • S-Section 02: kNN and Linear Regression [Notebook]

  • S-Section 02: kNN and Linear Regression

  • Lab 3: Matplotlib, Simple Linear Regression, kNN, array reshape

  • Lab 03: Extended Matplotlib, Simple Linear Regression, kNN, array reshape [Notebook]

  • Lab 03: Prelab [Notebook]

  • Lab 03: Matplotlib, Simple Linear Regression, kNN, array reshape [Notebook]

Statistical Model

  • Lecture 4: Introduction to Regression

Statsmodels

  • S-Section 02: kNN and Linear Regression [Notebook]

  • S-Section 02: kNN and Linear Regression

  • Lab 3: Matplotlib, Simple Linear Regression, kNN, array reshape

  • Lab 03: Extended Matplotlib, Simple Linear Regression, kNN, array reshape [Notebook]

  • Lab 03: Prelab [Notebook]

  • Lab 03: Matplotlib, Simple Linear Regression, kNN, array reshape [Notebook]

Stochastic Gradient Descent

  • S-Section 10: Feed Forward Neural Networks, Regularization, SGD Solver [Notebook]

  • S-Section 10: Feed Forward Neural Networks, Regularization, SGD Solver

  • S-Section 09: Feed forward neural networks [Notebook]

  • S-Section 09: Feed forward neural networks

T-Test.

  • Lecture 5: Linear Regression

Tensorflow

  • Lab 12: Building and Regularizing your first Neural Network [Notebook]

  • Lab 12: Building and Regularizing your first Neural Network [Notebook]

  • Lab 11: Neural Network Basics - Introduction to tf.keras [Notebook]

  • Lab 11: Neural Network Basics - Introduction to tf.keras [Notebook]

  • Lab 11: Neural Network Basics - Introduction to tf.keras

  • S-Section 09: Feed forward neural networks [Notebook]

  • S-Section 09: Feed forward neural networks

The Data Science Process

  • Lecture 2: Data Science Demo (repeat from Lecture 1) [Notebook]

  • Lecture 1: Data Science Demo [Notebook]

Train-Test

  • Lecture 4: Introduction to Regression

Training

  • S-Section 09: Feed forward neural networks [Notebook]

  • S-Section 09: Feed forward neural networks

Training And Testing Data Splitting

  • S-Section 02: kNN and Linear Regression [Notebook]

  • S-Section 02: kNN and Linear Regression

Trees

  • Lab 9: Decision Trees

  • Lab 9: Decision Trees [Notebook]

Variable Importance

  • Lecture 16: Bagging, & Random Forest

Variance Vs Bias

  • Lecture 15: Decision Trees

  • Lecture 15: Decision Trees [Notebook]

Visualization

  • Lecture 9: Visualization for Communication

Web Pages

  • Lab 13: Making websites! [Notebook]

Web Scraping

  • Lab 2: Pandas and Scraping

  • Lecture 3: Pandas and Web Scraping

Website Scraping

  • Lab 2: Pandas and Scraping

Websites

  • Lab 13: Making websites! [Notebook]

Weights

  • Lab 11: Neural Network Basics - Introduction to tf.keras [Notebook]

  • Lab 11: Neural Network Basics - Introduction to tf.keras [Notebook]

  • Lab 11: Neural Network Basics - Introduction to tf.keras

Wix

  • Lab 13: Making websites! [Notebook]

Www

  • Lab 13: Making websites! [Notebook]

YAML

  • Lab 1: Python basics, YAML environments, Numpy

  • Lab 01: YAML Environments, Python basics, Numpy [Notebook]


在这里学习https://harvard-iacs.github.io/2019-CS109A/pages/materials.html
长按以上二维码即可进入课程页面学习
Machine Learning

关于机器学习,参看1.机器学习之KNN分类算法介绍: Stata和R同步实现(附数据和代码),2.机器学习对经济学研究的影响研究进展综述,3.回顾与展望经济学研究中的机器学习,4.最新: 运用机器学习和合成控制法研究武汉封城对空气污染和健康的影响! 5.Top, 机器学习是一种应用的计量经济学方法, 不懂将来面临淘汰危险!6.Top前沿: 农业和应用经济学中的机器学习, 其与计量经济学的比较, 不读不懂你就out了!7. 前沿: 机器学习在金融和能源经济领域的应用分类总结,8.机器学习方法出现在AER, JPE, QJE等顶刊上了!9.机器学习第一书, 数据挖掘, 推理和预测,10.从线性回归到机器学习, 一张图帮你文献综述,11.11种与机器学习相关的多元变量分析方法汇总,12.机器学习和大数据计量经济学, 你必须阅读一下这篇,13.机器学习与Econometrics的书籍推荐, 值得拥有的经典,14.机器学习在微观计量的应用最新趋势: 大数据和因果推断,15.R语言函数最全总结, 机器学习从这里出发,16.机器学习在微观计量的应用最新趋势: 回归模型,17. 机器学习对计量经济学的影响, AEA年会独家报道,18.回归、分类与聚类:三大方向剖解机器学习算法的优缺点(附Python和R实现),19.关于机器学习的领悟与反思,20.机器学习,可异于数理统计,21.前沿: 比特币, 多少罪恶假汝之手? 机器学习测算加密货币资助的非法活动金额! 22.利用机器学习进行实证资产定价, 金融投资的前沿科学技术! 23.全面比较和概述运用机器学习模型进行时间序列预测的方法优劣!24.用合成控制法, 机器学习和面板数据模型开展政策评估的论文!25.更精确的因果效应识别: 基于机器学习的视角,26.一本最新因果推断书籍, 包括了机器学习因果推断方法, 学习主流和前沿方法 ,27.如何用机器学习在中国股市赚钱呢? 顶刊文章告诉你方法!28.机器学习和经济学, 技术革命正在改变经济社会和学术研究,29.世界计量经济学院士新作“大数据和机器学习对计量建模与统计推断的挑战与机遇”,30.机器学习已经与政策评估方法, 例如事件研究法结合起来识别政策因果效应了!31.重磅! 汉森教授又修订了风靡世界的“计量经济学”教材, 为博士生们增加了DID, RDD, 机器学习等全新内容!32.几张有趣的图片, 各种类型的经济学, 机器学习, 科学论文像什么样子?33.机器学习已经用于微观数据调查和构建指标了, 比较前沿!34.两诺奖得主谈计量经济学发展进化, 机器学习的影响, 如何合作推动新想法!35.前沿, 双重机器学习方法DML用于因果推断, 实现它的code是什么?


下面这些短链接文章属于合集,可以收藏起来阅读,不然以后都找不到了。

2.5年,计量经济圈近1000篇不重类计量文章,

可直接在公众号菜单栏搜索任何计量相关问题,

Econometrics Circle




数据系列空间矩阵 | 工企数据 |  PM2.5 | 市场化指数 | CO2数据 |  夜间灯光 官员方言  | 微观数据 | 内部数据
计量系列 匹配方法 | 内生性 | 工具变量 | DID | 面板数据 |  常用TOOL | 中介调节 | 时间序列 | RDD断点 | 合成控制 | 200篇合辑  | 因果识别 | 社会网络 | 空间DID
数据处理Stata | R |  Python | 缺失值 | CHIP/ CHNS/CHARLS/CFPS/CGSS等 |
干货系列能源环境 | 效率研究 |  空间计量 | 国际经贸 | 计量软件 | 商科研究 | 机器学习 |  SSCI | CSSCI | SSCI查询 | 名家经验
计量经济圈组织了一个计量社群,有如下特征:热情互助最多前沿趋势最多、社科资料最多、社科数据最多、科研牛人最多、海外名校最多。因此,建议积极进取和有强烈研习激情的中青年学者到社群交流探讨,始终坚信优秀是通过感染优秀而互相成就彼此的。


Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/137388
 
319 次点击