社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  Python

如何在python上显示斐波那契递归树

user6308605 • 3 年前 • 1296 次点击  

这是我目前的代码:

from loguru import logger

def fibonacci(n, s="% s"):
    """
    Using recursive method
    """
    # logger.debug(f"Finding {n}th Fibonacci number")
    logger.debug(s % ("fib(%d)" % (n)))

    a = 0
    b = 1

    if n <= 0:
        return a
    elif n in (1, 2):
        return b
    else:
        return fibonacci(n - 1,  s % ("fib(%d) + %%s" % (n - 1))) + fibonacci(n - 2, s % ("fib(%d) + %%s" % (n - 2)))

我的目标是在日志中显示递归树,例如 fibonacci(5) :

fib(5)
fib(4) + fib(3)
(fib(3) + fib(2)) + (fib(2) + fib(1))
and so on...

这可能吗?当前代码没有产生预期的输出。

电流输出:

fib(5)
fib(4) + fib(4)
fib(4) + fib(3) + fib(3)
fib(4) + fib(3) + fib(2) + fib(2)
fib(4) + fib(3) + fib(1) + fib(1)
fib(4) + fib(2) + fib(2)
fib(3) + fib(3)
fib(3) + fib(2) + fib(2)
fib(3) + fib(1) + fib(1)

想法是:

enter image description here

Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/128310
 
1296 次点击  
文章 [ 2 ]  |  最新文章 3 年前
גלעד ברקן
Reply   •   1 楼
גלעד ברקן    3 年前

一种方法是递归中的每个调用“报告”自己在树记录中的位置。然后我们可以逐级迭代。比如:

def f(n):
  t = ["None"] * (2**(n-1) + 1)
 
  def g(n, i):
    l = "(" if i & 1 else ""
    r = ")" if not (i & 1) else ""
    t[i] = "%sfib(%s)%s" % (l, n, r)
 
    if n > 1:
      g(n-1, 2*i+1)
      g(n-2, 2*i+2)
 
  g(n, 0)
 
  print(t[0][0:-1])
  i = 1
  while 2**i-1 < len(t):
    print(" + ".join(t[2**i-1:2**(i+1)-1]))
    i += 1

输出:

f(5)

"""
fib(5)
(fib(4) + fib(3))
(fib(3) + fib(2)) + (fib(2) + fib(1))
(fib(2) + fib(1)) + (fib(1) + fib(0)) + (fib(1) + fib(0)) + None + None
(fib(1) + fib(0))
"""
Alain T.
Reply   •   2 楼
Alain T.    3 年前

您可以定义一个类来保存二叉树节点,并根据递归斐波那契函数构建树:

class BNode:
    def __init__(self,value,left=None,right=None):
        self.value = value
        self.left  = left
        self.right = right
        
    def print(self):
        printBTree(self,nodeInfo=lambda n:(str(n.value),n.left,n.right))

from functools import lru_cache

@lru_cache()                   # optimize object count
def fiboTree(n):               # (n is an index, not a count)
    if n<2: return BNode(n)
    a,b = fiboTree(n-2),fiboTree(n-1)
    return BNode(a.value+b.value,a,b)

输出:

fiboTree(7).print()

                       13
          ____________/  \____________
         5                            8
   _____/ \____               _______/ \______
  2            3             3                5
 / \        __/ \_        __/ \_        _____/ \____
1   1      1      2      1      2      2            3
   / \    / \    / \    / \    / \    / \        __/ \_
  0   1  0   1  1   1  0   1  1   1  1   1      1      2
                   / \           / \    / \    / \    / \
                  0   1         0   1  0   1  0   1  1   1
                                                        / \
                                                       0   1

你可以找到 printBTree 作用 here

如果只需要说明调用层次结构,可以直接使用printBTree函数:

def fibo(n):
    n=int(n) # linking with strings to let zero come out as a node
    return (f"fibo({n})",[None,str(n-2)][n>1], [None,str(n-1)][n>1])


printBTree(5,fibo)

                      fibo(5)
            ____________/ \____________
     fibo(3)                           fibo(4)
       / \                          _____/ \____
fibo(1)   fibo(2)            fibo(2)            fibo(3)
            / \                / \                / \
     fibo(0)   fibo(1)  fibo(0)   fibo(1)  fibo(1)   fibo(2)
                                                       / \
                                                fibo(0)   fibo(1)

为了边打印边打印,我建议使用缩进来传达调用层次结构,否则重复添加的内容将很难与调用方联系起来。

def fibo(n,indent=""):
    if n<2: return n
    print(indent[:-3] + "|_ "*bool(indent) 
          + f"fibo({n}) = fibo({n-2}) + fibo({n-1})")
    return fibo(n-2,indent+"|  ")+fibo(n-1,indent+"   ") 



fibo(7)

fibo(7) = fibo(5) + fibo(6)
|_ fibo(5) = fibo(3) + fibo(4)
|  |_ fibo(3) = fibo(1) + fibo(2)
|  |  |_ fibo(2) = fibo(0) + fibo(1)
|  |_ fibo(4) = fibo(2) + fibo(3)
|     |_ fibo(2) = fibo(0) + fibo(1)
|     |_ fibo(3) = fibo(1) + fibo(2)
|        |_ fibo(2) = fibo(0) + fibo(1)
|_ fibo(6) = fibo(4) + fibo(5)
   |_ fibo(4) = fibo(2) + fibo(3)
   |  |_ fibo(2) = fibo(0) + fibo(1)
   |  |_ fibo(3) = fibo(1) + fibo(2)
   |     |_ fibo(2) = fibo(0) + fibo(1)
   |_ fibo(5) = fibo(3) + fibo(4)
      |_ fibo(3) = fibo(1) + fibo(2)
      |  |_ fibo(2) = fibo(0) + fibo(1)
      |_ fibo(4) = fibo(2) + fibo(3)
         |_ fibo(2) = fibo(0) + fibo(1)
         |_ fibo(3) = fibo(1) + fibo(2)
            |_ fibo(2) = fibo(0) + fibo(1)

这可以说明记忆的好处/效果:

def fibo(n,indent="",memo=None):
    if n<2: return n
    if memo is None: memo = dict()
    print(indent[:-3] + "|_ "*bool(indent) + f"fibo({n})",end=" = ")
    if n in memo:
        print("taken from memo")
    else:
        print(f"fibo({n-2}) + fibo({n-1})")
        memo[n] = fibo(n-2,indent+"|  ",memo)+fibo(n-1,indent+"   ",memo)
    return memo[n]

fibo(7) = fibo(5) + fibo(6)
|_ fibo(5) = fibo(3) + fibo(4)
|  |_ fibo(3) = fibo(1) + fibo(2)
|  |  |_ fibo(2) = fibo(0) + fibo(1)
|  |_ fibo(4) = fibo(2) + fibo(3)
|     |_ fibo(2) = taken from memo
|     |_ fibo(3) = taken from memo
|_ fibo(6) = fibo(4) + fibo(5)
   |_ fibo(4) = taken from memo
   |_ fibo(5) = taken from memo