1. L. G. Valiant. A theory of the learnable. Communications of the ACM. Volume 27 Issue 11. Nov. 1984 pp 1134–1142.https://dl.acm.org/doi/10.1145/1968.1972
2. Zdeborová, L. Understanding deep learning is also a job for physicists. Nat. Phys. 16, 602–604 (2020). https://doi.org/10.1038/s41567-020-0929-2
3. Yasaman Bahri et al. Statistical Mechanics of Deep Learning. Annual Review of Condensed Matter Physics. Vol. 11:501-528 (Volume publication date March 2020) https://doi.org/10.1146/annurev-conmatphys-031119-050745
4. Lagemann, C., Lagemann, K., Mukherjee, S. et al. Deep recurrent optical flow learning for particle image velocimetry data. Nat Mach Intell 3, 641–651 (2021). https://doi.org/10.1038/s42256-021-00369-0. https://www.nature.com/articles/s42256-021-00369-0
5. Dan Guest, Kyle Cranmer, Daniel Whiteson. Deep Learning and its Application to LHC Physics. arXiv:1806.11484 [hep-ex] (2018).https://arxiv.org/abs/1806.11484
6. Ravuri, S., Lenc, K., Willson, M. et al. Skilful precipitation nowcasting using deep generative models of radar. Nature 597, 672–677 (2021). https://www.nature.com/articles/s41586-021-03854-z
7. Karniadakis, G.E., Kevrekidis, I.G., Lu, L. et al. Physics-informed machine learning. Nat Rev Phys 3, 422–440 (2021). https://www.nature.com/articles/s42254-021-00314-5
8. Hibat-Allah, M., Inack, E.M., Wiersema, R. et al. Variational neural annealing. Nat Mach Intell 3, 952–961 (2021). https://www.nature.com/articles/s42256-021-00401-3
9. Kuhlman, B., Bradley, P. Advances in protein structure prediction and design. Nat Rev Mol Cell Biol 20, 681–697 (2019). https://www.nature.com/articles/s41580-019-0163-x
10. Biamonte, J., Wittek, P., Pancotti, N. et al. Quantum machine learning. Nature 549, 195–202 (2017). https://www.nature.com/articles/nature23474/
11. Giuseppe Carleo et al. Machine learning and the physical sciences. Rev. Mod. Phys. 91, 045002 (2019). https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.91.045002
12. https://neurips.cc/Conferences/2021/Schedule?showEvent=21862