社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  Python

PyPy为什么能让Python比C还快?一文了解内在机制

Python之禅 • 3 年前 • 405 次点击  
转自:机器之心,编辑:杜伟、陈萍

Python 之父 Guido van Rossum曾经说过:如果想让代码运行得更快,应该使用 PyPy。

对于研究人员来说,迅速把想法代码化并查看其是否行得通至关重要。Python 是能够实现这一目标的出色语言,它能够让人们专注于想法本身,而不必过度为代码格式等无聊的事情困扰。
但是,Python 有一个致命的缺点:速度比 C、C ++ 等语言慢很多。那么,构建一个 Python 原型测试想法之后,如何将其转变为快速且高性能的工具?通常来说,人们还要再进行一步工作:将 Python 代码手动转换为 C 语言的代码。但如果 Python 原型本身就可以运行得很快,那么转换代码的时间就可以做一些更有意义的事情。
而 PyPy,恰好可以解决这一问题。它能够让 Python 代码运行得比 C 还快。
import time
from termcolor import colored

start = time.time()
number = 0
for i in range(100000000):
    number += i
    
print(colored("FINISHED""green"))
print(f"Ellapsed time: {time.time() - start} s")
为了证明 PyPy 的速度,使用默认的 Python 解释器和 PyPy 运行上述代码,执行一个从整数 0 加到 100,000,000 的循环, 然后打印出运行时间。运行结果如下:
运行时间 Python vs PyPy
这不是学术意义上的评估,但该结果是令人惊叹的。与大约需要 10 秒钟的默认 Python 解释器相比,PyPy 仅用 0.22 秒就完成了执行。而且无需进行任何更改就可以直接将 Python 代码放到 PyPy 上。而同一台计算机上,等效的 C 语言实现需要 0.32 秒,PyPy 甚至击败了最快的 C 语言。

为什么 PyPy 这么快?
尽管代码完全相同,但代码的执行方式却大不相同。PyPy 提升速度的秘诀是「即时编译( just-in-time compilation)」,即 JIT 编译
提前编译 
C、C ++、Swift、Haskell、Rust 等编程语言通常是提前编译(AOT 编译)的。这意味着用这些语言编写代码之后,编译器会将源代码转换成特定计算机架构可读的机器码。也就是说在执行程序时,执行的并不是原始源代码,而是机器码。
提前编译把源代码转化为机器代码

解释语言 

与 C 语言等上述语言不同,Python、JavaScript、PHP 等语言采用另一种方法——解释语言。与将源代码转换为机器码相比,解释的过程中源代码是保持不变的。每次运行程序时,解释器都会逐行查看代码并运行。例如,每个 Web 浏览器都内置了 JavaScript 解释器。
解释器逐行运行程序
即时编译
PyPy 是利用即时编译来执行 Python 代码的。即 PyPy 不同于解释器,它并不会逐行运行代码,而是在执行程序前先将部分代码编译成机器码。
JIT 编译综合了提前编译和解释
如上图所示,而 PyPy 使用的 JIT 编译是解释和提前编译的结合,可以利用提前编译来提高性能,并提高解释型语言的灵活性和跨平台可用性。
这也就是为什么PyPy可以让Python有这么快的执行速度了。目前,大部分的使用者还保持使用着默认的Python编译器,如果对速度有要求不妨可以试试PyPy编译器
Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/113952
 
405 次点击