社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  机器学习算法

机器学习+材料应用培训:合金催化、单原子催化、CO2RR、MOF、d带中心、钙钛矿、STM、熔点、有机小分子、电极涂层、体积模量

微算云平台 • 2 年前 • 285 次点击  
近年,机器学习这个词越来越频繁的进入大家的视野。作为一个时髦的工具,机器学习似乎无所不能,下围棋?用机器学习!解蛋白?用机器学习!开发材料?用机器学习!

化学学科长期以来主要依赖实验与计算这两个手段,机器学习的到来使得它多了一种研究方式。目前看来,机器学习在化学与材料领域应用越来越多,相关的文章发表量也逐年增长,这也使得更多的传统化学工作者开始关注这一新的研究工具。

化学与材料科学研究的四个范式
机器学习在材料科学领域的应用中最吸引人的是新材料的研发。机器学习是一种数据处理的方法,随着计算机计算能力与大批量实验开展能力的提升,材料学相关数据库的数据量也越来越多。数据库使用、数据库与高通量筛选结合、与机器学习的结合也开始进入研究的高速发展期。
材料科学的数据日益增多

与机器学习、数据库在材料科学领域的火热与迅猛发展相比,机器学习在材料科学的研究资料却相对匮乏。机器学习属于数学与计算机科学领域的交叉学科,与化学本身关系不大,这就造成了“懂化学的不懂机器学习,懂机器学习的不懂化学”的尴尬情形。机器学习与材料还有很多研究空白,可探索区域很多,而很多材料科学的研究者们却因数学与编程对机器学习望而却步。

为了降低大家入门机器学习的门槛,华算科技黄老师原创设计了机器学习与材料课程,课程同时包含理论与实操部分,包含大量研究案例,帮助大家快速掌握机器学习这一有力工具,快速使用到自己的研究之中。

本次培训10月17日开课!直播授课,互动答疑,课程群永不解散,随时提问。

课程案例:熔点、有机小分子、MOF、d带中心、吸附能、合金催化、单原子催化、CO2RR、钙钛矿、STM图像、电极涂层、Materials Project数据库抓取、体积模量、钢铁强度、反应动力学、高通量计算、高通量筛选、机器学习势、AIMD、决策树/贝叶斯/支持向量机/神经网络/随机森林、回归/分类/聚类算法、模型评价/性能度量。

前20位报名立减500元,数量有限,先到先得!

👇👇扫描二维码,立即报名👇👇 

👆👆电话:13128723011 👆👆
该课程已成功举办9期,深受学员欢迎,往期学员评价节选如下:
(点击图片可查看大图)

讲师介绍

黄博士华算科技全职技术专家,武汉大学本科,北京大学博士,新加坡国立大学访问学者。目前已发表SCI文章共20篇,其中第一作者文章5篇,单篇最高影响因子>40。
从事理论计算与实验化学研究工作十年,擅长使用机器学习进行化学理论的研究及实验数据的处理,曾获华中地区数学建模邀请赛三等奖,北京大学游戏AI对抗全国邀请赛第四名等相关奖项。

课表一览

课程内容


01

机器学习简介

通过简单易懂的案例介绍机器学习是什么,机器学习基本思想。
了解机器学习在化学中的应用以及近年逐渐火热的原因,了解当代化学学习的四个范式。

02

简单模型与模型评价

通过简单的化学与材料科学案例熟悉sklearn库,进行简单的机器学习,学习线性、非线性拟合的方法。
学习欠拟合与过拟合的概念,掌握模型评价方法并了解其必要性,对各种模型评价方法进行学习与使用。

03

分类算法

分类算法是机器学习算法中的一个重要算法。本小节将会讲解决策树算法、KNN算法、Bayes算法与支持向量机算法的原理,并使用有机小分子与MOF的案例学习这些常用分类算法的使用。学习分类算法的性能度量方法,并将性能度量结果进行可视化。

04

回归算法

回归算法作是机器学习在材料科学领域中极为常用的算法,也是机器学习学习的重点之一。
本节将通过d带中心案例,合金催化与单原子催化案例介绍常用的机器学习算法。内容包括算法原理的介绍与实际代码中算法的使用方法,并将数据预处理、模型评价方法结合在各个案例中进行使用,加深对机器学习算法全流程的理解。

05

数据库与高通量筛选

数据库在材料分析中的使用越来越多,本节将介绍常用的材料科学数据库。Materials Project(MP)数据库与matminer数据库是课程介绍的重点。
课程将介绍新版MP数据库的使用方法,并结合数据库进行高通量筛选的案例演示,介绍高通量筛选与机器学习的联系等。

06

集成学习

前面小节的内容已完成了机器学习的基本算法学习,此小节将学习近年较为火热的集成学习方法。集成学习由于结果更加精确、稳定、彪悍,逐渐成为机器学习的主流算法。
本节将学习主要的集成学习方法原理,并使用钢铁强度、CO2RR、钙钛矿案例进行实例学习与演示。

07

聚类算法

聚类算法作为机器学习算法的一种,在材料科学领域也有一定的应用。本小节将介绍常见的k-means聚类算法、层次聚类算法的基本原理,并介绍其实操使用。

08

机器学习前沿

通过前面课程的学习,同学们已经能掌握机器学习在材料领域使用的基本思路,并能够使用机器学习解决自己所在领域的基本问题了。
然而,机器学习在材料科学领域的应用广而杂, 尽管我们的课程已经将尽可能多的案例纳入,但机器学习在材料领域仍有许多知识我们无法详述。这一部分将对这些知识进行简短的讲解,并对机器学习算法进行总结,帮助大家对机器学习领域有更为系统的认识。

报名方式

主办单位:深圳华算科技有限公司(拥有VASP、Materials Studio、Gaussian、LAMMPS商业版权
培训形式:播课程,课程群永不解散,随时提问,及时解答。
开课时间:10月17日至10月21日
课程费用:3980元,提供增值税普通发票及邀请函。请提前报名,我们会根据学员课前反馈,适当增加课程内容。老客户有优惠,请联系华算科技-小硕咨询。
报名方式:识别下方二维码报名,或者联系手机13128723011。
👇👇扫描二维码,立即报名👇👇 
👆👆电话:13128723011 👆👆

缴费方式

1. 银行转账汇款
收款单位:深圳华算科技有限公司
银行账号:758869652456
开户行:中国银行深圳西丽支行 
注意:付款时请备注“姓名+单位+机器学习”
2. 支付宝转账
企业支付宝账户:hskj@v-suan.com
请核对户名:深圳华算科技有限公司
注意:付款时请备注“姓名+单位+机器学习”
3. 刷卡/扫码支付
可通过公司微信收款码刷公务卡,请扫码填写报名信息以便我们提前为您准备发票等报销手续。
划重点:请先添加课程客服微信报名再缴费!
Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/147883
 
285 次点击